Contact Information
235 Illini Hall, M/C 382
1409 W. Green Street
Urbana, IL 61801
Research Interests
Hilbert transform along the vector field; Multilinear oscillatory integrals; multilinear Carleson theorem.
Research Description
Harmonic Analysis
Education
Ph.D. 2001, University of Missouri at Columbia
Additional Campus Affiliations
Professor, Mathematics
External Links
Recent Publications
Chen, X., Guo, J., & Li, X. (2021). Two bipolynomial Roth theorems in R. Journal of Functional Analysis, 281(2), Article 109024. https://doi.org/10.1016/j.jfa.2021.109024
Dong, D., Li, X., & Sawin, W. (2020). Improved estimates for polynomial Roth type theorems in finite fields. Journal d'Analyse Mathematique, 141(2), 689-705. https://doi.org/10.1007/s11854-020-0113-8
Li, X., & Wu, S. (2020). New estimates of the maximal Bochner–Riesz operator in the plane. Mathematische Annalen, 378(3-4), 873-890. https://doi.org/10.1007/s00208-020-02038-w
Du, X., & Li, X. (2019). lp decoupling for restricted k-broadness. Mathematische Zeitschrift, 292(1-2), 725-737. https://doi.org/10.1007/s00209-018-2178-y
Dong, D., & Li, X. C. (2018). On a hybrid of bilinear Hilbert transform and paraproduct. Acta Mathematica Sinica, English Series, 34(1), 29-41. https://doi.org/10.1007/s10114-017-6415-9