# Currently Offered Courses - Spring 2018

Browse more courses on Course Explorer

Analyses of the mathematical issues and methodology underlying elementary mathematics in grades K-5. Topics include sets, arithmetic algorithms, elementary number theory, rational and irrational numbers, measurement, and probability. There is an emphasis on problem solving. Priority registration will be given to students enrolled in teacher education programs leading to certification in elementary or childhood education. Prerequisite: MATH 112 (formerly MATH 012) or equivalent.

Rapid review of basic techniques of factoring, rational expressions, equations and inequalities; functions and graphs; exponential and logarithm functions; systems of equations; matrices and determinants; polynomials; and the binomial theorem. Prerequisite: 1.5 units of high school algebra; 1 unit of high school geometry.

Reviews trigonometric, rational, exponential, and logarithmic functions; provides a full treatment of limits, definition of derivative, and an introduction to finding area under a curve. Intended for students who need preparation for MATH 220, either because they lack the content background or because they are not prepared for the rigor of a university calculus course. Credit is not given for both MATH 115 and either MATH 014 or MATH 114. Credit is not given for MATH 115 if credit for either MATH 220 or MATH 221 has been earned. Prerequisite: An adequate ALEKS placement score as described at http://math.illinois.edu/ALEKS/, demonstrating knowledge of the topics of MATH 112.

Analyses of the mathematical issues and methodology underlying elementary mathematics in grades 6-8. Topics include the Real number system and field axioms, sequences and series, functions and math modeling with technology, Euclidean and non-Euclidean geometry, probability and statistics. Priority registration will be given to students enrolled in teacher education programs leading to certification in elementary education. Prerequisite: MATH 112 (formerly MATH 012) or equivalent.

Introduction to finite mathematics for students in the social sciences; introduces the student to the basic ideas of logic, set theory, probability, vectors and matrices, and Markov chains. Problems are selected from social sciences and business. Prerequisite: MATH 112 (formerly MATH 012) or an adequate ALEKS score.

Introduction to selected areas of mathematical sciences through application to modeling and solution of problems involving networks, circuits, trees, linear programming, random samples, regression, probability, inference, voting systems, game theory, symmetry and tilings, geometric growth, comparison of algorithms, codes and data management. Prerequisite: Three years of high school mathematics, including two years of algebra and one year of geometry.

Approved for both letter and S/U grading. May be repeated.

Study of compound interest and annuities; applications to problems in finance. Prerequisite: MATH 231 or equivalent.

Beginning course on discrete mathematics, including sets and relations, functions, basic counting techniques, recurrence relations, graphs and trees, and matrix algebra; emphasis throughout is on algorithms and their efficacy. Credit is not given for both MATH 213 and CS 173. Prerequisite: MATH 220 or MATH 221, or equivalent.

First course in calculus and analytic geometry; basic techniques of differentiation and integration with applications including curve sketching; antidifferentation, the Riemann integral, fundamental theorem, exponential and trigonometric functions. Credit is not given for both MATH 220 and either MATH 221 or MATH 234. Prerequisite: An adequate ALEKS placement score as described at http://math.illinois.edu/ALEKS/, demonstrating knowledge of topics of MATH 115. Students with previous calculus experience should consider MATH 221.

Systems of linear equations, matrices and inverses, determinants, and a glimpse at vector spaces, eigenvalues and eigenvectors. Credit is not given for both MATH 225 and any of MATH 125, MATH 410, or MATH 415. Prerequisite: MATH 220 or MATH 221; or equivalent.

Second course in calculus and analytic geometry: techniques of integration, conic sections, polar coordinates, and infinite series. Prerequisite: MATH 220 or MATH 221.

Introduction to the concept of functions and the basic ideas of the calculus. Credit is not given for both MATH 234 and either MATH 220 or MATH 221. Prerequisite: An adequate ALEKS placement score as described at http://math.illinois.edu/ALEKS/, demonstrating knowledge of the topics of MATH 112.

Third course in calculus and analytic geometry including vector analysis: Euclidean space, partial differentiation, multiple integrals, line integrals and surface integrals, the integral theorems of vector calculus. Credit is not given for both MATH 241 and MATH 292. Prerequisite: MATH 231.

Techniques and applications of ordinary differential equations, including Fourier series and boundary value problems, and an introduction to partial differential equations. Intended for engineering majors and others who require a working knowledge of differential equations. Credit is not given for both MATH 285 and any of MATH 284, MATH 286, MATH 441. Prerequisite: MATH 241.

Techniques and applications of ordinary differential equations, including Fourier series and boundary value problems, linear systems of differential equations, and an introduction to partial differential equations. Covers all the MATH 285 plus linear systems. Intended for engineering majors and other who require a working knowledge of differential equations. Credit is not given for both MATH 286 and any of MATH 284, MATH 285, MATH 441. Prerequisite: MATH 241.

Fundamental ideas used in many areas of mathematics. Topics will include: techniques of proof, mathematical induction, binomial coefficients, rational and irrational numbers, the least upper bound axiom for real numbers, and a rigorous treatment of convergence of sequences and series. This will be supplemented by the instructor from topics available in the various texts. Students will regularly write proofs emphasizing precise reasoning and clear exposition. Credit is not given for both MATH 347 and MATH 348. Prerequisite: MATH 231.

Methods and techniques of solving problems in actuarial mathematics for advanced students intending to enter the actuarial profession. Approved for S/U grading only. May be repeated in the same or separate terms to a maximum of 4 hours. Prerequisite: Consent of instructor.

Guided individual study of advanced topics not covered in other courses. May be repeated to a maximum of 8 hours. Approved for both letter and S/U grading. Prerequisite: Consent of instructor.

Full-time or part-time practice of math or actuarial science in an off-campus government, industrial, or research laboratory environment. Summary report required. Approved for S/U grading only. May be repeated in separate terms. Prerequisite: After obtaining an internship, Mathematics majors must request entry from the Mathematics Director of Undergraduate Studies; Actuarial Science majors must request entry from the Director of the Actuarial Science Program.

Historical development of geometry; includes tacit assumptions made by Euclid; the discovery of non-Euclidean geometries; geometry as a mathematical structure; and an axiomatic development of plane geometry. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241; MATH 347 or MATH 348, or equivalent; or consent of instructor.

Selected topics from geometry, including the nine-point circle, theorems of Cera and Menelaus, regular figures, isometries in the plane, ordered and affine geometries, and the inversive plane. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241; MATH 347 or 348, or equivalent; or consent of instructor.

Emphasizes techniques of linear algebra and introductory and advanced applications to actuarial science, finance and economics. Topics include linear equations, matrix theory, vector spaces, linear transformations, eigenvalues and eigenvectors and inner product spaces. In addition, current research topics such as modeling, data mining, and generalized linear models are explored. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 410 and any of MATH 125, MATH 225, MATH 415 or MATH 416. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241; MATH 210 or FIN 221; or consent of instructor.

Examines basic concepts and applications of graph theory, where graph refers to a set of vertices and edges that join some pairs of vertices; topics include subgraphs, connectivity, trees, cycles, vertex and edge coloring, planar graphs and their colorings. Draws applications from computer science, operations research, chemistry, the social sciences, and other branches of mathematics, but emphasis is placed on theoretical aspects of graphs. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 347 or MATH 348 or equivalent experience or CS 374.

Permutations and combinations, generating functions, recurrence relations, inclusion and exclusion, Polya's theory of counting, and block designs. Same as CS 413. 3 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and completion of additional work of substance. Prerequisite: MATH 347 or MATH 348 or equivalent experience.

Introduction to the formalization of mathematics and the study of axiomatic systems; expressive power of logical formulas; detailed treatment of propositional logical and predicate logic; compactness theorem and Godel completeness theorem, with applications to specific mathematical theories; algorithmic aspects of logical formulas. Proofs are emphasized in this course, which can serve as an introduction to abstract mathematics and rigorous proof; some ability to do mathematical reasoning required. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 347 or MATH 348 or equivalent experience.

Introductory course emphasizing techniques of linear algebra with applications to engineering; topics include matrix operations, determinants, linear equations, vector spaces, linear transformations, eigenvalues, and eigenvectors, inner products and norms, orthogonality, equilibrium, and linear dynamical systems. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 415 and any of MATH 125, MATH 225, MATH 410, or MATH 416. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241 or consent of instructor.

Rigorous proof-oriented course in linear algebra. Topics include determinants, vector spaces over fields, linear transformations, inner product spaces, eigenvectors and eigenvalues, Hermitian matrices, Jordan Normal Form. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 416 and either MATH 410 or MATH 415. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241 or consent of instructor; MATH 347 is recommended.

Fundamental theorem of arithmetic, congruences. Permutations. Groups and subgroups, homomorphisms. Group actions with applications. Polynomials. Rings, subrings, and ideals. Integral domains and fields. Roots of polynomials. Maximal ideals, construction of fields. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: Either MATH 416 or one of MATH 410, MATH 415 together with one of MATH 347, MATH 348, CS 374; or consent of instructor.

Rings of quotients of an integral domain. Euclidean domains, principal ideal domains. Unique factorization in polynomial rings. Fields extensions, ruler and compass constructions. Finite fields with applications. Modules. Structure theorem for finitely generated modules over principal ideal domains. Application to finitely generated abelian groups and canonical forms of matrices. Introduction to error-correcting codes. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 417 or consent of instructor.

A rigorous treatment of basic real analysis via metric spaces recommended for those who intend to pursue programs heavily dependent upon graduate level Mathematics. Metric space topics include continuity, compactness, completeness, connectedness and uniform convergence. Analysis topics include the theory of differentiation, Riemann-Darboux integration, sequences and series of functions, and interchange of limiting operations. As part of the honors sequence, this course will be rigorous and abstract. 3 undergraduate hours. No graduate credit. Credit is not given for both Math 424 and either Math 444 or Math 447. Approved for honors grading. Prerequisite: An honors section of MATH 347 or an honors section of MATH 416, and consent of the department.

A theoretical treatment of differential and integral calculus in higher dimensions. Topics include inverse and implicit function theorems, submanifolds, the theorems of Green, Gauss and Stokes, differential forms, and applications. As part of the honors sequence, this course will be rigorous and abstract. 3 undergraduate hours. No graduate credit. Approved for honors grading. Prerequisite: MATH 424 and either MATH 415 or MATH 416, and consent of the department.

Informal set theory, cardinal and ordinal numbers, and the axiom of choice; topology of metric spaces and introduction to general topological spaces. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 347 or MATH 348 or consent of instructor.

Basic course in ordinary differential equations; topics include existence and uniqueness of solutions and the general theory of linear differential equations; treatment is more rigorous than that given in MATH 285. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 441 and any of MATH 284, MATH 285, MATH 286. 4 hours of credit requires approval of the instructor and completion of additional work of substance. Prerequisite: MATH 241; MATH 347 or MATH 348 is recommended.

Introduces partial differential equations, emphasizing the wave, diffusion and potential (Laplace) equations. Focuses on understanding the physical meaning and mathematical properties of solutions of partial differential equations. Includes fundamental solutions and transform methods for problems on the line, as well as separation of variables using orthogonal series for problems in regions with boundary. Covers convergence of Fourier series in detail. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and completion of additional work of substance. Prerequisite: One of MATH 284, MATH 285, MATH 286, MATH 441.

Careful treatment of the theoretical aspects of the calculus of functions of a real variable intended for those who do not plan to take graduate courses in Mathematics. Topics include the real number system, limits, continuity, derivatives, and the Riemann integral. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 444 and either Math 424 or MATH 447. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241; MATH 347 or MATH 348, or equivalent.

For students who desire a working knowledge of complex variables; covers the standard topics and gives an introduction to integration by residues, the argument principle, conformal maps, and potential fields. Students desiring a systematic development of the foundations of the subject should take MATH 448. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 446 and MATH 448. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241.

Careful development of elementary real analysis for those who intend to take graduate courses in Mathematics. Topics include completeness property of the real number system; basic topological properties of n-dimensional space; convergence of numerical sequences and series of functions; properties of continuous functions; and basic theorems concerning differentiation and Riemann integration. 3 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 447 and either Math 424 or MATH 444. 4 hours of credit requires approval of the instructor and completion of additional work of substance. Prerequisite: MATH 241 or equivalent; junior standing; MATH 347 or MATH 348, or equivalent experience; or consent of instructor.

For students who desire a rigorous introduction to the theory of functions of a complex variable; topics include Cauchy's theorem, the residue theorem, the maximum modulus theorem, Laurent series, the fundamental theorem of algebra, and the argument principle. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 448 and MATH 446. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 447.

Basic introduction to the theory of numbers. Core topics include divisibility, primes and factorization, congruences, arithmetic functions, quadratic residues and quadratic reciprocity, primitive roots and orders. Additional topics covered at the discretion of the instructor include sums of squares, Diophantine equations, continued fractions, Farey fractions, recurrences, and applications to primality testing and cryptopgraphy. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241 or equivalent.

Introduction to mathematical probability; includes the calculus of probability, combinatorial analysis, random variables, expectation, distribution functions, moment-generating functions, and central limit theorem. 3 or 4 undergraduate hours. 3 or 4 graduate hours. Credit is not given for both MATH 461 and either MATH 408 or ECE 313. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241 or equivalent.

Continuation of MATH 471. Introduction to tabular or parametric survival models with single or multiple-life states; life insurance and annuity premium calculations; reserving and profit measures; introductions to universal life insurances, participating insurances, pension plans and retirement benefits. 3 undergraduate hours. No graduate credit. Credit is not given for MATH 472 and MATH 565. Prerequisite: MATH 471.

Theoretical foundation in financial models and their applications to insurance and other financial risks. Topics include derivative markets, no arbitrage pricing of financial derivatives, interest rate models, dynamic hedging and other risk management techniques. 3 undergraduate hours. No graduate credit. Credit is not given for MATH 476 and MATH 567. Prerequisite: Credit or concurrent registration in STAT 409 or STAT 410.

Foundation in the actuarial modeling process; construction, selection and validation of empirical models and parametric models. Also covers survival, severity, frequency and aggregate loss models; statistical methods to estimate model parameters. 3 undergraduate hours. No graduate credit. Credit is not given for MATH 478 and MATH 568. Prerequisite: MATH 408, MATH 461 or MATH 463; credit or concurrent registration in MATH 409 or MATH 464.

Introductory course in modern differential geometry focusing on examples, broadly aimed at students in mathematics, the sciences, and engineering. Emphasis on rigorously presented concepts, tools and ideas rather than on proofs. The topics covered include differentiable manifolds, tangent spaces and orientability; vector and tensor fields; differential forms; integration on manifolds and Generalized Stokes Theorem; Riemannian metrics, Riemannian connections and geodesics. Applications to configuration and phase spaces, Maxwell equations and relativity theory will be discussed. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241 and one of MATH 415 or MATH 416 or equivalent.

Rigorous introduction to a wide range of topics in optimization, including a thorough treatment of basic ideas of linear programming, with additional topics drawn from numerical considerations, linear complementarity, integer programming and networks, polyhedral methods. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 410, MATH 415, or MATH 416.

Iterative and analytical solutions of constrained and unconstrained problems of optimization; gradient and conjugate gradient solution methods; Newton's method, Lagrange multipliers, duality and the Kuhn-Tucker theorem; and quadratic, convex, and geometric programming. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and department with completion of additional work of substance. Prerequisite: MATH 241; MATH 347 or MATH 348; or equivalent; MATH 415 or equivalent; or consent of instructor.

Complex linear algebra, inner product spaces, Fourier transforms and analysis of boundary value problems, Sturm-Liouville theory. Same as ECE 493. 3 undergraduate hours. 3 or 4 graduate hours. Prerequisite: One of MATH 284, MATH 285, MATH 286, MATH 441.

Studies mathematical theory of dynamical systems, emphasizing both discrete-time dynamics and nonlinear systems of differential equations. Topics include: chaos, fractals, attractors, bifurcations, with application to areas such as population biology, fluid dynamics and classical physics. Basic knowledge of matrix theory will be assumed. 3 or 4 undergraduate hours. 3 or 4 graduate hours. 4 hours of credit requires approval of the instructor and completion of additional work of substance. Prerequisite: One of MATH 284, MATH 285, MATH 286, MATH 441.

Deals with selected topics and applications of mathematics; see Class Schedule or department office for current topics. 1 to 4 undergraduate hours. 1 to 4 graduate hours. May be repeated with approval. Prerequisite: Consent of instructor.

Work closely with department faculty on a well-defined research project. Topics and nature of assistance vary. Capstone paper or computational project required. 1 to 3 undergraduate hours. No graduate credit. Approved for Letter and S/U grading. May be repeated in separate terms up to 8 hours. Prerequisite: Evidence of adequate preparation for such study; consent of faculty member supervising the work; and approval of the department head.

Careful study of a selected area of mathematics, carried out either deductively from axioms or inductively through problems; subject matter varies with instructor. 3 undergraduate hours. No graduate credit. May be repeated to a maximum of 6 hours. Prerequisite: Consent of Mathematics Honors Committee.

Seminar is required of all first-year graduate students in Mathematics. It provides a general introduction to the courses and research work in all of the areas of mathematics that are represented at the University of Illinois at Urbana-Champaign. 1 undergraduate hour. 1 graduate hour. Approved for S/U grading only. May be repeated to a maximum of 2 hours. Prerequisite: Graduate standing or consent of instructor.

Free groups, groups given by generators and relations, van Kampen diagrams. Free product with amalgamations and HNN-extensions, Bass-Serre theory. Solvable and nilpotent groups. Quasi-isometries and geometric properties of groups. Prerequisite: MATH 500 or equivalent.

An introduction to the study of algebraic sets defined by polynomial equations; affine and projective space and their subvarieties; rational and regular functions and mappings; divisors, linear systems, and projective embeddings; birational geometry, blowing up; Grassmannians and other special varieties. Prerequisite: MATH 500.

Vector bundles, principal bundles, connections, parallel transport, curvature, Chern-Weyl theory, Hodge-DeRham theory. Other topics may include Riemannian geometry, symplectic geometry, spin geometry, and harmonic maps. Prerequisite: MATH 518 or consent of instructor.

Introduction to the study of topological spaces by means of algebraic invariants. Topics include the fundamental group, covering spaces and their classification, simplicial and singular homology, applications such as the Brouwer fixed point theorem and the Jordan curve theorem. Prerequisite: MATH 417 and MATH 448 or consent of instructor.

Further development of the theory of fields covering topics from valuation theory, ideal theory, units in algebraic number fields, ramification, function fields, and local class field theory. Prerequisite: MATH 500 or equivalent.

Development of themes from MATH 531 and further topics chosen from additive number theory, asymptotic properties of multiplicative functions, circle method, diophantine approximation, lattice point problems, metric theory, modular forms, sieve theory. May be repeated. Prerequisite: MATH 531.

Lebesgue measure on the real line; integration and differentiation of real valued functions of a real variable; and additional topics at discretion of instructor. Prerequisite: MATH 447 or equivalent.

Fundamental results in functional analysis; spectral theory of compact operators; further topics chosen by the instructor. Prerequisite: MATH 540.

Basic introduction to the study of partial differential equations; topics include: the Cauchy problem, power-series methods, characteristics, classification, canonical forms, well-posed problems, Riemann's method for hyperbolic equations, the Goursat problem, the wave equation, Sturm-Liouville problems and separation of variables, Fourier series, the heat equation, integral transforms, Laplace's equation, harmonic functions, potential theory, the Dirichlet and Neumann problems, and Green's functions. Prerequisite: Consent of instructor.

Mathematical foundations of probability and stochastic processes; probability measures, random variables, distribution functions, convergence theory, the Central Limit Theorem, conditional expectation, and martingale theory. Same as STAT 551. Prerequisite: MATH 541 or consent of instructor.

Tabular and parametric survival models with single or multiple-life states; life insurance and annuity premium calculations; reserving, and profit measures; introduction to universal life insurances, participating insurances, pension plans and retirement benefits. 4 graduate hours. No professional credit. Credit is not given for MATH 472 and MATH 565. Prerequisite: MATH 471.

Introduction to the actuarial modeling process: construction, selection and validation of empirical and parametric models. Survival, severity, frequency and aggregate loss models; statistical methods to estimate model parameters. 4 graduate hours. No professional credit. Credit is not given for MATH 478 and MATH 568. Prerequisite: MATH 408, MATH 461 or MATH 463.

Zermelo-Fraenkel axiomatic set theory; basic concepts in set theory such as ordinal, cardinal, rank, and definition by transfinite recursion; Godel's constructible universe; introduction to forcing; Boolean valued universes; large cardinals; consistency and independence of the continuum hypothesis and the axiom of choice. Prerequisite: MATH 570 or consent of instructor.

Extremal problems and parameters for graphs. Distance and connectivity, matching and factors, vertex and edge colorings, perfect and imperfect graphs, intersection classes and intersection parameters, Turan's theorem, graph Ramsey theory, graph decomposition and other extremal problems. Same as CS 572. Prerequisite: MATH 580 or consent of instructor.

Combinatorial methods and other mathematical methods for combinatorial problems. Enumeration by bijections and generating functions, probabilistic methods for existence proofs and asymptotic analysis, randomized algorithms, Ramsey's theorem and related topics, combinatorial designs and their applications, geometric problems and methods. Same as CS 575. Prerequisite: MATH 580 or consent of instructor.

Full-time or part-time practice of graduate-level mathematics in an off-campus government, industrial, or research laboratory environment. Summary report required. 0 graduate credit. No professional credit. Approved for S/U grading only. May be repeated in separate terms.

See Class Schedule for current topics. 1 to 4 graduate hours. No professional credit. May be repeated in the same or separate semesters. Prerequisite: Consent of instructor.

Independent study in Mathematics. 1 to 8 graduate hours. No professional credit. Approved for Letter and S/U grading. May be repeated in the same or separate terms, with a maximum of 8 hours per semester. Prerequisite: Consent of instructor.

Seminar on topics of current interest in mathematics. Students present seminars and discussions on various topics. See Class Schedule for current topics. Recommended for all Mathematics students. 0 to 4 graduate hours. No professional credit. Approved for Letter and S/U grading. May be repeated in the same or separate semesters as topics vary. Prerequisite: Consent of instructor.

Approved for S/U grading only. May be repeated. Prerequisite: Consent of instructor.