Contact Information
Research Areas
Research Description
My broad research interests are in homotopy theory and algebraic geometry, with a focus on applications of homotopy theory (classical, equivariant, and motivic) to the study of algebraic cycles and algebraic K-theory.
Education
PhD, Northwestern University, 2006
Additional Campus Affiliations
Associate Professor, Mathematics
External Links
Recent Publications
Heller, J., Voineagu, M., & Østvær, P. A. (2024). Bredon motivic cohomology of the complex numbers. Documenta Mathematica, 29(1), 115-140. https://doi.org/10.4171/DM/939
Gepner, D., & Heller, J. (2023). THE TOM DIECK SPLITTING THEOREM IN EQUIVARIANT MOTIVIC HOMOTOPY THEORY. Journal of the Institute of Mathematics of Jussieu, 22(3), 1181-1250. https://doi.org/10.1017/S1474748021000372
Heller, J., & Stephan, M. (2021). Free (Z/p)n-complexes and p-DG modules. Journal of Algebra, 565, 221-254. https://doi.org/10.1016/j.jalgebra.2020.07.028
Antieau, B., Gepner, D., & Heller, J. (2019). K-theoretic obstructions to bounded t-structures. Inventiones Mathematicae, 216(1), 241-300. https://doi.org/10.1007/s00222-018-00847-0
Heller, J., Voineagu, M., & Østvær, P. A. (2019). Topological comparison theorems for bredon motivic cohomology. Transactions of the American Mathematical Society, 371(4), 2875-2921. https://doi.org/10.1090/tran/7553