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Guthrie’s map-color problem

Can every map be colored with
four colors so that neighboring
countries are colored differently?

We certainly need four for some maps

four neighboring countries . . . but not here

. .. but do four colors suffice for all maps?



A map-coloring problem

The countries of this map are to be colored
red, blue, green, and yellow.

What color is country B?

Country A must be blue or red



Try blue first: if country A is blue. ..

then Fis red, D is green,
and we can’t then color C



So country A
is red,
country Cis
green,
and we can
complete
the coloring:




Coloring the USA

New Hampshire
Michigan Vermont

Montana

Massachusetts
Rhode Island
Connecticut
New Jersey

Delaware
Maryland

Arizona : leahomq 1




Two observations

The map can be on
a plane or a sphere

It doesn’t matter
whether we include

the outside region




De Morgan’s letter
to W. R. Hamilton

23 October 1852

——

The student was Frederick
Guthrie, Francis’s brother, who’d
been coloring a map of England




The first appearance in print?
F. G. in The Athenaeum, June 1854
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Mobius and the five princes (c.1840)

A king on his death-bed:
‘My five sons, divide my land among
you, so that each part has
a border with each of the others.’

Mobius’s problem has no solution:
five neighboring regions cannot exist




Some logic. ..

A solution to Modbius’s problem would give
us a 5-colored map:

‘5 neighboring regions exist’ implies that

‘the 4-color theorem is false’

and so
‘the 4-color theorem is true’ implies that
‘5 neighboring regions don’t exist’
BUT
‘5 neighboring regions don’t exist” DOESN’T imply that
‘the 4-color theorem is true’

So Mobius did NOT originate the 4-color problem



Arthur Cayley revives the problem

13 June 1878
London Mathematical Society
Has the problem been solved?

1879: short note: we need
consider only ‘cubic’ maps
(3 countries at each point)

original map add patch color map shrink patch




A. B. Kempe ‘proves’ the theorem

American Journal of Y A%
Mathematics, 1879 -

‘On the geographical problem
of the four colours’

From Euler’s polyhedron formula:
Every map contains a digon, triangle, square, or pentagon

triangle square pentagon



Kempe’s proof 1: digon or triangle
Every map can be 4-colored

Assume not, and let M be a map with the smallest
number of countries that cannot be 4-colored.

If M contains a digon or triangle T, remove it,
4-colour the resulting map, reinstate T,
and color it with any spare color.

This gives a 4-coloring for M: contradiction

original map obtain new map color new map color original map



Kempe’s proof 2: square

If the map M contains a square S, try to proceed as before:

/////

\\\\\\

original map obtain new map color new map try to color original map

Are the red and green countries joined? Two cases:




Kempe’s proof 3: pentagon

If the map M contains a pentagon P:
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original map obtain new map color new map try to color original map

Carry out TWO ‘Kempe interchanges’ of color:




The problem becomes popular. ..

Lewis Carroll turned the problem
into a game for two people...

1886: J. M. Wilson, Headmaster of
Clifton College, set it as a challenge
problem for the school
1887: ... and sent it to the Journal
of Education

... who in 1889 published a
‘solution’ by Frederick Temple,
Bishop of London




Percy Heawood’s
‘bombshell’

1890: ‘Map-colour theorem’

* pointed out the error in Kempe’s proof

* salvaged enough from it to prove the 5-color
theorem

 generalized the problem from the sphere to
other surfaces



Heawood’s example 1

You cannot do two Kempe interchanges at once. ..
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Maps on other surfaces

The four-color problem concerns maps on a plane
or sphere . .. but what about other surfaces?

Q TORUS
@ 7 colors suffice . . .

HEAWOOD CONIJECTURE
For a surface with h holes (h =2 1)
[*/,(7 + V(1 + 48h))] colors suffice
h=1: [1/,(7 +Vv49)] =7
h=2: [1/,(7 +Vv97)] =8
But do we need this number of colors?
YES: G. Ringel & J. W. T. Youngs (1968)




Two main ideas

A configuration is a collection
of countries in a map.

We shall be concerned with
* unavoidable sets of configurations

* reducible configurations



Unavoidable sets

triangle square pentagon

is an unavoidable set:
every map contains at least one of them

and so is the following set of Wernicke (1904):

square two pentagons pentagon/hexagon



Unavoidable sets

~ -

Wernicke
1904

triangle square two pentagons pentagon/hexagon

P. Franklin 1922:

so the four-color

theorem is true
for all maps with up

to 25 countries.

triangle square

Later sets found by
two pentagons and a hexagon a pentagon and two hexagons H . Le besgu e ( 1940) .




Reducible configurations

triangle square

Each of these configurations is ‘reducible’:
any coloring of the rest of the map
can be extended to include them

So is the ‘Birkhoff diamond’ (1913)




Testing for
reducibility

Color the countries 1-6
in all 31 possible ways: Bivichotf ciarnaid

rgrgrg  rgrbrg®  rgrbgy* rgbrgy  rgbryb  rgbgbg* rgbyrg  rgbygy*
> | rgrgrb*  rgrbrb  rgrbyg*  rgbrbg* rgbgrg* rgbgby  rgbyrb  rgbybg*
rgrgbg  rgrbry  rgrbyb* rgbrby  rgbgrb* rgbgyg  rgbyry* rgbyby*
rgrgby*  rgrbgb* rgbrgb  rgbryg  rgbgry* rgbgyb  rgbygh

rgrgrb extends directly:

In fact, ALL can be done directly
or via Kempe interchanges of color




Enter Heinrich Heesch (1906-95)

In 1932 he solved Hilbert’s Problem 18 on
tilings of the plane.

He invented the ‘method of discharging’ for
unavoidable sets, and found thousands of
reducible configurations.

He estimated that 10,000 configurations
might need to be tested, up to ‘ring-size’ 18.

He gave lectures on the 4-color problem at
the University of Kiel, attended by Haken.

To solve the four color problem,
find an unavoidable set of reducible configurations

Every map must contain at least one of them, and whichever it
is, any coloring of the rest of the map can be extended to it.



Maps versus graphs
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Three obstacles to reducibility

4-legger country 3-legger articulation country hanging 5-5 pair

If any of these appears in a configuration,
then it’s likely not to be reducible.



Enter Wolfgang Haken

Three problems:

The knot problem
(solved completely in 1954)

The Poincaré conjecture
(almost solved)

The four-color problem
(solved with Ken Appel in 1976)

“Mathematicians usually know when they have gotten too deep
into the forest to proceed any further. That is the time Haken
takes out his penknife and cuts down the trees one at a time.”



Enter Kenneth Appel

Heesch, Haken, and others were already using
computers to test reducibility, with a certain
amount of success. But the problem was
quickly becoming too big to handle, possibly
with thousands of large configurations, each
taking many hours of computer time.

Haken, in a lecture at the University of lllinois
“The computer experts have told me that it is not possible to go on
like that. But right now I’'m quitting. | consider this to be the point
to which and not beyond one can go without a computer.”

In the audience was Appel, an experienced computer programmer
“l don’t know of anything involving computers that can’t be done:
some things just take longer than others.

Why don’t we take a shot at it?”



1976
Kenneth Appel
& Wolfgang Haken

(Univ. of Illinois)

Every planar map is

four colorable
(with John Koch)

They solved the problem by finding
an unavoidable set of 1936
(later 1482) reducible configurations.




The Appel-Haken approach

They developed a ‘discharging method’
that yields an unavoidable set of
‘likely-to-be-reducible’ configurations.

They then used a computer to check whether
these configurations are actually reducible:
if not, modify the unavoidable set.

They had to go up to ‘ring-size’ 14.
(199,291 colorings)




The proof is
widely acclaimed
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Aftermath

The ‘computer proof’ was greeted with suspicion,
derision and dismay — and raised philosophical issues.
Is a ‘proof’ really a proof if you can’t check it by hand?

Some minor errors were found in Appel and Haken’s
proof, and corrected.

Using the same approach, N. Robertson, P. Seymour,
D. Sanders, and R. Thomas obtained a more systematic
proof in 1994, involving about 600 configurations.

In 2004 G. Gonthier produced a fully machine-checked
proof of the four-color theorem (a formal machine
verification of Robertson et al.’s proof).



The story is not finished

Many new lines of research have been stimulated
by the four-color theorem, and there are several
conjectures of which it is but a special case.

In 1978 W. T. Tutte wrote:

The Four Colour Theorem
is the tip of the iceberg,
the thin end of the wedge
and the first cuckoo of Spring




THE FOUR-COLOR PROBLEM 5

New Hampshire
Vermont \

Michigan

— Massachusetts
Rhode lsland
~ Connecticut

Maryland

brary

We can make a couple of further observations about this map. Notice
first that at one point of the United States four states meet—Utah, Colo-
rado, New Mexico, and Arizona. We shall adopt the convention that when
two countries meet at a single point, we are allowed to color them the
same—so Utah and New Mexico may be colored the same, as may Colo-
rado and Arizona. This convention is necessary, since otherwise we could
construct “pie maps” that require as many colors as we choose—for ex-

ample, the eight-slice pie map below would need eight colors
eight slices meet at the center. With our convention, this map

only two colors. EULER'S FAMOUS FORMULA 31

If we now relax the condition that the faces must all be of the same
type but still require the corners to have the same arrangement of regular
polygons around them, then we obtain the semiregular (or Archimedean)
polyhedra. There are two infinite families of these, the prisms and the anti-
prisms, consisting of a pair of congruent polygons on the top and bot-

Another familiar “map” that needs only two colors is the chd  tom, with a strip of squares or equilateral triangles around the middle.

At each meeting point of four squares we alternate the colors

white, producing the usual chessboard coloring (see below).
how the map problem !

prism antiprism

PrINCELON: SCIENGE
‘T&

was SO l ved There are also thirteen other semiregular polyhedra, some with won-

derful names, such as the snub cube and the great rhombicosidodeca-
hedron. Illustrated below are the cuboctahedron (with square and tri-
angular faces), the truncated octahedron (with square and hexagonal

REVISED COLOR EDITION faces), the truncated icosahedron (with pentagonal and hexagonal

faces), and the great rhombicuboctahedron (with square, hexagonal,
and octagonal faces).

with a new foreword
by lan Stewart

ROBIN WILSON

These polyhedra are not just mathematical curiosities—they are
found widely throughout nature: for example, crystals of iron pyrites
occur naturally as cubes, octahedra, and dodecahedra, while lead sul-
phide crystals take the form of cuboctahedra. More recently, certain




