Math 561, Spring 2011 Final, May 10

Do your best. We are as much interested in your ability to think and reason as the correct answers.

- 1. 50 points Let $\{X_n; n \in \mathbb{N}\}$ be independent and identically distributed random variables with common law given by $\mathbb{P}\{X_1 = 1\} = p \in (0,1) \setminus \{\frac{1}{2}\}$ and $\mathbb{P}\{X_1 = -1\} = 1 p$. Define $S_n = \sum_{i=1}^n X_i$. For any integer x, define $T_x = \inf\{n : S_n = x\}$. Let $\varphi(x) = (\frac{1-p}{p})^x$. Fix also integers a < 0 < b and define $T \stackrel{\text{def}}{=} \min\{T_a, T_b\}$.
 - (a) 10 points Show that $\varphi(S_n)$ is a martingale with respect to the filtration

$$\mathscr{F}_n \stackrel{\text{def}}{=} \sigma\{X_m; m \leq n\}.$$

- (b) 20 points Show that $\mathbb{P}\{T < \infty\} = 1$. Hint: compute $\lim_{n \to \infty} \frac{1}{n} \ln \varphi(S_n)$.
- (c) 20 points Show that

$$\mathbb{P}\{T_a < T_b\} = \frac{\varphi(b) - \varphi(0)}{\varphi(b) - \varphi(a)}.$$

Hint: Consider the quantity $\varphi(S_T)$.

- 2. 50 points Let X be a bounded or nonnegative random variable, and let $\mathscr G$ be a sub sigma-algebra of $\mathscr F$. Let $\mathbb P'$ be a second probability measure on $(\Omega,\mathscr F)$ which is absolutely continuous with respect to $\mathbb P$, and let $\mathbb E'$ be the expectation operator associated with $\mathbb P'$.
 - (a) 10 points Prove that \mathbb{P}' -a.s., $\mathbb{E}\left[\frac{d\mathbb{P}'}{d\mathbb{P}}\middle|\mathscr{G}\right] > 0$.
 - (b) 40 points Prove that

$$\mathbb{E}'[X|\mathcal{G}] = \frac{\mathbb{E}\left[X\frac{d\mathbb{P}'}{d\mathbb{P}}\big|\mathcal{G}\right]}{\mathbb{E}\left[\frac{d\mathbb{P}'}{d\mathbb{P}}\big|\mathcal{G}\right]}.$$

3. 50 points Let $\{\mu_i; i \in \mathscr{I}\}$ be a collection of probability measures on \mathbb{R} , where \mathscr{I} is some index set. For each $i \in \mathscr{I}$, define the characteristic function

$$\varphi_i(\theta) \stackrel{\text{def}}{=} \int_{\mathbb{R}} e^{\sqrt{-1}\theta x} \mu_i(dx). \qquad \theta \in \mathbb{R}$$

Recall that $\{\mu_i; i \in \mathscr{I}\}$ is said to be tight if for every $\varepsilon > 0$, there is a compact subset K of \mathbb{R} such that

$$\sup_{i\in\mathscr{I}}\mu_i(K^c)<\varepsilon.$$

Show that $\{\mu_i; i \in \mathscr{I}\}$ is tight if $\{\varphi_i; i \in \mathscr{I}\}$ is equicontinuous in a neighborhood of the origin. The point here is that control of the characteristic function near the origin controls the tail behavior of the μ_i 's. We will break this up into several parts.

(a) 10 points First prove that

$$\frac{1}{2\delta} \int_{-\delta}^{\delta} \left\{ 1 - \frac{\varphi_i(\theta) + \varphi_i(-\theta)}{2} \right\} d\theta = \int_{x \in \mathbb{R} \setminus \{0\}} \left\{ 1 - \frac{\sin(\delta x)}{\delta x} \right\} \mu_i(dx).$$

(b) 20 points Show that

$$\mu_i\left([-L,L]^c\right) \le \frac{L}{4} \int_{\theta=-2/L}^{2/L} \left\{1 - \frac{\varphi_i(\theta) + \varphi_i(-\theta)}{2}\right\} d\theta.$$

Hint: you might first understand the structure of the function $f(x) \stackrel{\text{def}}{=} 1 - \frac{\sin(x)}{x}$. You might separately consider the cases $|x| \geq 2$ and $|x| \leq 2$.

- (c) 20 points Show that indeed $\{\mu_i; i \in \mathscr{I}\}$ is tight if $\{\varphi_i; i \in \mathscr{I}\}$ is equicontinuous in a neighborhood of the origin.
- 4. 50 points Suppose that $\{X_1, X_2, \dots\}$ is an independent collection of random variables such that $\mathbb{E}[X_n] = 0$ and $\mathbb{E}[X_n^4] \leq 1$. Show that $\lim_{n \to \infty} \frac{S_n}{n} = 0$ almost surely.