Probability Comprehensive Exam, May 2009

1. (25 points) Let $X_1, X_2, ...$ be a sequence of independent and identically distributed positive random variables with $P(X_1 > x) = e^{-x}$ for all $x \ge 0$. Show that

$$\limsup_{n\to\infty}\frac{X_n-\ln n}{\ln\ln n}=1$$

almost surely.

2. (25 points) Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables such that for some $\alpha \in (0, 2)$,

$$P(X_1 > x) = P(X_1 < -x), \quad P(|X_1| > x) = x^{-\alpha}, \quad x \ge 1.$$

Define $S_n = X_1 + \cdots + X_n$ for $n \ge 1$. Show that, as $n \to \infty$, $n^{-1/\alpha}S_n$ converges weakly to a symmetric α -stable random variable, that is a random variable with characteristic function $\phi(t) = \exp(-C|t|^{\alpha})$ for some C > 0.

3. (20 points) Let (Ω, \mathcal{F}, P) be a probability space and let \mathcal{F}_n , $n \geq 0$, be an increasing sequence of sub- σ -fields of \mathcal{F} . (a) Suppose that $H_n \geq 0$ is a sequence of bounded random variables such that H_n is measurable with respect to \mathcal{F}_{n-1} for every $n \geq 1$. Show that, if X_n , $n \geq 0$, is a supermartingale with respect to $\{\mathcal{F}_n, n \geq 0\}$, then $(H \cdot X)_n$, $n \geq 1$, is a supermartingale with respect to $\{\mathcal{F}_n, n \geq 1\}$, where for each $n \geq 1$,

$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1}).$$

- (b) Suppose that X_n , $n \geq 0$, is a supermartingale with respect to $\{\mathcal{F}_n, n \geq 0\}$ and T is a stopping time with respect to $\{\mathcal{F}_n, n \geq 0\}$. Show that $X_{T \wedge n}$ is a supermartingale with respect to $\{\mathcal{F}_n, n \geq 0\}$.
- 4. (25 points) Suppose that Y_n is a sequence of real valued random variables converging weakly to a real-valued random variable Y, and that Z_n is a sequence of nonnegative real-valued random variable converging weakly to a constant c > 0. Show that $Y_n Z_n$ converges weakly to cY.