COMPREHENSIVE EXAM, MATH 561

1. (60 pts) Let X be an exponential random variable with parameter 1. For each $t \ge 0$ define

$$M_t = 1_{\{X \le t\}} - X \wedge t$$
, $\mathcal{F}_t = \sigma(\{X \le s\} : s \le t)$.

- a) Show that M is adapted to $\{\mathcal{F}_t\}$. b) For any $A\in\mathcal{F}_s,\ A\cap\{X>s\}$ is either \emptyset or $\{X>s\}$. Hint: Use Dynkin's $\pi - \lambda$ -theorem.
 - c) Show that M is a martingale.

2. (40 pts) Two common modes of convergence of random variables are convergence in probability and almost sure convergence. We say the $weak\ law$ (resp. strong law) of large numbers holds for a sequence X_1, X_2, \ldots of integrable, centered random variables if

$$\frac{X_1+\cdots+X_n}{n}\to 0,\quad \text{as } n\to \infty,$$

in probability (resp. almost surely).

- a) If the weak law of large numbers holds, show that then $X_n/n \to 0$ in probability.
- b) If the strong law of large numbers holds, show that then $X_n/n \to 0$ almost surely.