Comprehensive Exam, Probability, January 2008

1. Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of random variables on a common probability space so that the variances are bounded, and so that $Cov[X_j, X_k] \to 0$ uniformly as $|j - k| \to \infty$. Prove that for every $\epsilon > 0$

 $\lim_{n\to\infty} P\left(\frac{1}{n}|\sum_{k=1}^n (X_k - \mathbb{E}[X_k])| \ge \epsilon\right) = 0.$

- 2. Let X_1, X_2, \ldots be independent and identically distributed random variables on a common probability space with mean-value 0 and variance 1, and set $S_n = X_1 + \cdots + X_n$.
- (a) Use the central limit theorem and Kolmogorov's 0-1-law to conclude that $\limsup S_n/\sqrt{n} = \infty$ almost surely.
- (b) Use an argument by contradiction to show that S_n/\sqrt{n} does not converge in probability.
- 3. Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of independent and identically distributed Gaussian random variables with mean-value 0 and variance 1. For each $n=1,2,\ldots$ set

$$M_n = \exp\left(\left(\sum_{k=1}^n X_k\right) - n/2\right), \quad \mathcal{F}_n = \sigma(X_k, 1 \le k \le n).$$

- a) Show that M is a martingale with respect to the filtration $\{\mathcal{F}_n\}$.
- b) Find $\langle M \rangle$, the unique nondecreasing process such that $\langle M \rangle_1 = 0$, $\langle M \rangle_n$ is \mathcal{F}_{n-1} -measurable for n > 1, and $M_n^2 \langle M \rangle_n$ is an \mathcal{F}_n -martingale.