Probability Comprehensive Exam, January 2006

There are 4 questions, 100 points total. All random variables are definied on a common probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ with expectation operator \mathbb{E} .

1. 25 points Let \mathscr{F}_1 and \mathscr{F}_2 be two σ -algebras. Suppose that \mathscr{C}_1 and \mathscr{C}_2 are π -systems with

$$\sigma(\mathscr{C}_1) = \mathscr{F}_1$$
 and $\sigma(\mathscr{C}_2) = \mathscr{F}_2$,

and such that $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ for any $A \in \mathcal{C}_1$, $B \in \mathcal{C}_2$. Use the $\pi - \lambda$ -theorem to prove that \mathcal{F}_1 and \mathcal{F}_2 are independent.

- 2. (a) 10 points Prove the second Borel-Cantelli lemma: If $\{A_n\}_1^{\infty}$ is a sequence of independent events and $\sum_n \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\overline{\lim}_n A_n) = 1$.
 - (b) 15 points (Durrett) Give an example of a sequence $\{X_k\}_1^{\infty}$ of $\{0,1\}$ -valued random variables such that $X_k \to 0$ in probability, but such that for almost every $\omega \in \Omega$, there is an increasing sequence $\{N_n(\omega)\}_1^{\infty}$ of integers such that $X_{N_n(\omega)}(\omega) \to 1$.
- 3. 25 points Let $\{X_k\}_1^{\infty}$ be a sequence of mutually independent random variables such that $X_k = \pm 1$ with probability $\frac{1}{2}(1 k^{-2})$ and $X_k = \pm k$ with probability $\frac{1}{2}k^{-2}$. If

$$S_n \stackrel{\mathrm{def}}{=} X_1 + \dots + X_n,$$

show that $\operatorname{Var}[S_n/\sqrt{n}] \to 2$ and also that S_n/\sqrt{n} converges weakly to a standard normal random variable. Hint: compare X_k to $X_k' \stackrel{\text{def}}{=} X_k/|X_k|$.

4. 25 points Let X_1, X_2, \ldots be a sequence of independent nonnegative random variables, each with mean 1. Set $M_0 = 1$, and for $n = 1, 2, \ldots$, let

$$M_n \stackrel{\mathrm{def}}{=} X_1 X_2 \cdots X_n.$$

- (a) 10 points Let $\mathscr{F}_0 \stackrel{\text{def}}{=} \{\emptyset, \Omega\}$, and $\mathscr{F}_n \stackrel{\text{def}}{=} \sigma\{X_1, \dots, X_0\}$. Show that M_n is a martingale with respect to $\{\mathscr{F}_n\}_1^{\infty}$ and that $M_{\infty} \stackrel{\text{def}}{=} \lim_{n \to \infty} M_n$ exists \mathbb{P} -a.s.
- (b) 15 points If $\prod_{n=1}^{\infty} a_n > 0$, where $0 < a_n \stackrel{\text{def}}{=} \mathbb{E}[X_n^{1/2}] \le 1$, show that $\mathbb{E}[M_{\infty}] = 1$.