Comprehensive Exam Fall 2012

Do your best. We are as much interested in your ability to think and reason as the correct answers.

1. 40 points Let $\{\mathscr{F}_n\}_{n\in\mathbb{N}}$ be a filtration of sub-sigma-algebras of \mathscr{F} . Recall that for any stopping time τ ,

$$\mathscr{F}_{\tau} \stackrel{\mathrm{def}}{=} \left\{ A \in \mathscr{F} : A \cap \left\{ \tau \leq n \right\} \in \mathscr{F}_{n} \text{ for all } n \in \mathbb{N} \right\}.$$

- (a) 20 points Suppose that τ_1 and τ_2 are two stopping times such that $\tau_1 \leq \tau_2$. Show that $\mathscr{F}_{\tau_1} \subset \mathscr{F}_{\tau_2}$.
- (b) 20 points Show that τ is \mathscr{F}_{τ} measurable.
- 2. 50 points Let's construct the Prohorov metric on the collection $\mathscr{S}(\mathbb{R})$ of Borel probability measures on \mathbb{R} . Let \mathscr{C} be the collection of closed subsets of \mathbb{R} , and for any subset A of \mathbb{R} and any $\varepsilon > 0$, define

$$A^{\varepsilon} \stackrel{\text{def}}{=} \{ x \in \mathbb{R} : \operatorname{dist}(x, A) < \varepsilon \},$$

where $\operatorname{dist}(x,A) \stackrel{\text{def}}{=} \inf_{y \in A} |x-y|$ for all $x \in \mathbb{R}$. For any μ and ν in $\mathscr{P}(\mathbb{R})$, define

$$\rho(\mu,\nu) \stackrel{\mathrm{def}}{=} \inf \left\{ \varepsilon > 0 : \, \mu(F) \leq \nu(F^{\varepsilon}) + \varepsilon \text{ for all } F \in \mathscr{C} \right\}.$$

Fix two points x and y in \mathbb{R} .

- (a) 25 points Directly show that $\rho(\delta_x, \delta_y) \leq |x y|$.
- (b) 25 points Directly show that $|x y| \le \rho(\delta_x, \delta_y)$.