Total points 100. Do 4 out of the 5 problems.

Instructions. Show all your work and make your explanations as full as possible. Calculators are not allowed on this exam, and neither are books or notes.

Problem 1 (25 points)

Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \). Let \(\vec{V}(x, t) \) be a smooth vector field and consider the parabolic partial differential equation

\[
\begin{align*}
 u_t - \Delta u + \vec{V} \cdot \nabla u &= 0, & x \in \Omega, & t \in (0, T) \\
 u(x, 0) &= u_0(x), & x \in \overline{\Omega} \\
 u(x, t) &= f(x, t), & x \in \partial \Omega & t \in (0, T).
\end{align*}
\]

(1)

a) (15 points) State and prove a weak maximum principle for the problem.

b) (10 points) Prove that there exists at most one smooth solution, continuous up to the boundary for the above problem.

Problem 2 (25 points)

Consider the conservation law \(G'(u)u_x + u_t = 0 \) for \((x, t) \in (a, b) \times (0, \infty) \) where \(G \in C^1(\mathbb{R}) \).

a) (5 points) Define an integral solution of the conservation law for \(a \leq x \leq b \).

b) (5 points) Derive the jump (Rankine-Hugoniot) condition satisfied by a piecewise smooth integral solution \(u \) across a smooth curve where the solution has a discontinuity.

c) (15 points) Solve the conservation law when \(G(u) = u^2 + u \) with initial condition

\[
h(x) = u(x, 0) = \begin{cases}
 1 & \text{for } x < 0, \\
 0 & \text{for } x > 0.
\end{cases}
\]
Problem 3 (25 points)

In what follows we define the Fourier transform for appropriately smooth and decaying functions:

\[\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{\mathbb{R}} f(x) e^{-ix\xi} \, dx \]

and

\[f(x) = \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} \, d\xi, \]

Recall also that

\[\hat{f \ast g}(\xi) = (2\pi)^{\frac{1}{2}} \hat{f}(\xi)\hat{g}(\xi). \]

a) (5 points) Evaluate the Fourier transform of \(\chi_{[-t,t]}(x) \) which is the function that equals 1 inside the interval \([-t,t]\] and zero otherwise.

b) (10 points) Using the Fourier transform method solve the initial value problem (IVP) for non-negative times \(t \geq 0 \)

\[
\begin{cases}
 u_{tt} + 2u_t - u_{xx} + u = 0, & x \in \mathbb{R}, \\
 u(x,0) = 0, & u_t(x,0) = f(x),
\end{cases}
\]

where \(f \) is a smooth and compactly supported function.

Hint: You may find the transformation \(u(x,t) = e^{-t}v(x,t) \) useful.

c) (10 points) Define an appropriate energy functional for the equation and show that the solution of the IVP of part b) is unique.

Problem 4 (25 points)

a) (5 points) Write down the solution of the wave equation \(u_{tt} - c^2 u_{xx} \) in one dimension, with initial conditions \(u(x,0) \equiv 0 \) and \(u_t(x,0) = \psi(x) \).

b) (5 points) Let \(R > 0 \) and suppose

\[\chi(x) = \begin{cases}
 x & \text{when } -R < x < R, \\
 0 & \text{otherwise.}
\end{cases} \]

Show \(u(x,t) = 0 \) in Regions 1, 2, 3 (that is, outside the shaded region).

c) (10 points) Solve the wave equation \(u_{tt} = c^2 \Delta u \) in three dimensions with radially symmetric initial conditions \(u(\bar{x},0) \equiv 0 \) and

\[u_t(\bar{x},0) = \psi(\bar{x}) = \begin{cases}
 1 & \text{when } |\bar{x}| < R, \\
 0 & \text{otherwise.}
\end{cases} \]
d) (5 points) Describe the region in three dimensions where \(u \) is supported (that is, where it is nonzero), at time \(t = 2R/c \).

Problem 5 (25 points)

This problem is about certain properties of harmonic functions.

a) (7 points) Let \(\Omega \) be a domain in \(\mathbb{R}^n \) and \(u \in C(\Omega) \) (continuous function). State (as an equation, not in words) what it means for \(u \) to satisfy the mean value property.

b) (18 points) Now suppose \(\Omega = B_a(0) \subset \mathbb{R}^n \), the open ball of radius \(a \) centered at the origin. Define \(\Omega_+ := \Omega \cap \mathbb{R}^n_+ \) where \(\mathbb{R}^n_+ \) is the open half space and define \(\Omega_0 := \{ x \in \Omega : x_n = 0 \} \). Let \(u \in C^2(\Omega_+) \cap C(\Omega_+ \cup \Omega_0) \) be harmonic in \(\Omega_+ \) with \(u = 0 \) on \(\Omega_0 \). Show how to extend \(u \) to a harmonic function \(\bar{u} \) in all of \(\Omega \). Prove that your extension is indeed harmonic. Be sure to explain why the conditions on \(u \) stated above are needed.