Comprehensive Exam in PDE's - May 2006

Solve 4 problems. Each problem is 25 points.

1) First order equations

Consider the inviscid Burger's equation: $u_t + uu_x = 0$ with initial data

$$u(t = 0, x) = \begin{cases} 1 & \text{for } x \le 0 \\ 1 - x^2 & \text{for } 0 < x \le 1 \\ x^2 - 4x + 3 & \text{for } 1 < x < 2 \\ -1 & \text{for } 2 \le x. \end{cases}$$

- (i) Is the problem well posed? (State a theorem and verify whether it applies to this Cauchy problem)
- (ii) Find the classical solution of the problem (an implicit form is sufficient). For how long is it valid?
- (iii) Knowing that Burger's equation comes from the following conservation law $u_t + (0.5u^2)_x = 0$ find the weak solution of the problem past time t = 1.

2) Second order equations

Consider the following equation in 2 independent variables $u_{xx} - 4u_{xy} + 3u_{yy} = 8x, \ x, y \in \mathbb{R}$

- (i) What type of equation is it?
- (ii) Compute its canonical form.
- (iii) Find its general solution (the one dependent on two arbitrary functions).

3) Heat equation

Let $U = \mathbb{R}^n \times [0, T]$. Let $u \in C^2(U)$ be bounded and satisfying $u_t - \Delta u \leq 0$ in U. Prove the following weak maximum principle in unbounded domains:

$$M := \sup_{(x,t) \in U} u(x,t) = \sup_{x \in \mathbb{R}^n} u(x,0) =: m.$$

Hint: Fix $x_0 \in \mathbb{R}^n$ and show that $v_{x_0}(x,t) := u(x,t) - \varepsilon(2nt + |x - x_0|^2) \le m$ for all x,t and $\varepsilon > 0$. Let $\varepsilon \to 0$ to conclude that $u(x_0,t) \le m$ for all $x_0 \in \mathbb{R}^n$.

1

- 4) Energy method
- a) Let Ω be a smooth bounded domain in \mathbb{R}^n . Let u be a C^2 solution of the wave equation

$$u_{tt} = \Delta u, \quad x \in \Omega, t > 0,$$

 $u(x,t) = 0, \quad x \in \partial \Omega, t > 0.$

Show that the energy

$$E_{\Omega}(t) := \frac{1}{2} \int_{\Omega} (u_t^2 + |\nabla u|^2) dx$$

is constant in time.

b) Show the uniqueness of the solutions of the equation:

$$u_{tt} = \Delta u + f(x,t), \quad x \in \Omega, t > 0,$$

 $u(x,t) = g(x), \quad x \in \partial\Omega, t > 0,$
 $u(x,0) = h_1(x), \quad u_t(x,0) = h_2(x), \quad x \in \Omega.$

5) Mean value property

Let $u \in C^2(\mathbb{R}^n)$, $n \geq 2$. Prove that u is harmonic if and only if

$$u(x) = \frac{1}{|\partial B(x,r)|} \int_{\partial B(x,r)} u dS$$

for all $x \in \mathbb{R}^n$, r > 0. Here $|\partial B(x,r)|$ denotes the total surface area of the sphere $\partial B(x,r)$. Also, discuss the analogous statement in one dimension.