Comprehensive Exam in PDE’s - January 2006
BEach probelm is worth 25 peints. It suffices o soive_ 4 problems to get full credis.

1) First order equations
Consider the following initial value probiem:
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Find the solution valid until time £ = 3.

2) Distributions
i) Let u{z) = |2] on R. Calculate the first and second weak derivatives.

ii) Solve the equation

U~ Uge U =0, t>0,x€R
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vsing Fourier transform. You may find the following integral useful:
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3) Energy Method

Consider the equation
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i) Find an appropriate conserved quantity. Prove your claim.

ii) Using part i} prove that the given equation with the initial conditions u({0,z} = f(z),

{0, 2} = g{x} has a unique solution.



4) Maximum principle

State and prove a maximum principle for the equation (veR)
U~ Upyr + YU =0, t20a<z<h
5} Laplace equation
i} Find the Green function for the Dirichlet problem on the ball of radius 1 in R?. (The

fundamental solution for the Laplacian on R® is K{z) = —(dr|z{)"1.)

ii) Write down and justify the formula {Poisson) for smooth solutions of:

S Au o= 0 reR? jzl<1
w(z) = g(x) forjzl =1

where g is a smooth function on the unit sphere.



