553

Comprehensive Exam in PDE's - August 2006

Each problem is worth 25 points. It suffices to solve 4 problems to get full credit.

1) General nonlinear first order equations

Consider $u = u_x^2 + u_y^2$ with the initial condition $u(x,0) = ax^2$. For which positive constants "a" is there a solution? Is it unique? Find all solutions.

2) Hyperbolic equations

Consider the equation $u_{tt} - u_{xx} + xu_x + u = 0$.

- i) Write down the definition of a weak solution of the equation.
- ii) Consider the initial data

$$u(t=0,x) = \left\{ egin{array}{ll} 1, & x \leq 0 \\ 0, & x > 0 \end{array}
ight.$$
 $u_t(t=0,x) = 0$

where do you expect the weak solution to be discontinuous? Carefully explain your answer.

- iii) Find the transmission condition across one characteristic.
- 3) Maximum principle

State and prove a maximum principle for the equation $(\gamma \in \mathbb{R})$

$$u_t - u_{xx} + \gamma u_x = 0$$
, $t \ge 0$, $a \le x \le b$.

4) Energy Method

Consider the equation

$$u_t - \Delta u = f, \quad x \in \Omega, \quad 0 < t < T,$$
 $u = 0, \quad x \in \partial \Omega, \quad 0 < t < T,$ $u = g, \quad x \in \Omega, \quad t = 0.$

Using energy methods, state and prove a result about "continuous dependence on the data" for the given equation. You may assume that all functions are smooth on $\bar{\Omega}$ and that g has compact support in Ω .

5) Poisson's equation

Let f be a smooth function with compact support in \mathbb{R}^3 .

- i) Write down the fundamental solution of the Laplacian in \mathbb{R}^3 (solving $\Delta K = \delta$ in \mathbb{R}^3).
- ii) Find u solving $\delta u = f$ in \mathbb{R}^3 and satisfying $u(x) \to 0$ as $|x| \to \infty$.
- iii) Assume that f is radially symmetric and is supported in the unit ball. Suppose also that $\int_{\mathbb{R}^3} f(x) dx = 1$. Show that u(x) = K(x) for all |x| > 1.