550 Comprehensive Exam — May 2009

1. Let p(z) be a complex quadratic polynomial, i.e.

$$p(z) = az^2 + bz + c,$$

where $a, b, c \in \mathbb{C}$, and consider the equation

$$\frac{dz}{dt} = p(z(t)), \quad z(0) = z_0 \in \mathbb{C}. \tag{1}$$

We are interested in the set of polynomials such that every solution of (1), for any $z_0 \in \mathbb{C}$, lies in \mathbb{C} for all time. Define this set of polynomials by \mathcal{P} . Write down necessary and sufficient conditions on a, b, c so that $p \in \mathcal{P}$. If $p \in \mathcal{P}$, what kind of zeros can p have?

2. Consider the initial value problem (IVP)

$$(1 - 2t) x'(t) + \alpha_1 x(t) = \alpha_2, (2)$$

$$x(0) = A, (3)$$

where α_1, α_2, A are real constants and $\alpha_1 > 0$. We are aiming to show that this IVP has infinitely many solutions for $t \in [0, 1]$.

- (a) Show that the IVP (equations (2) and (3) together) has a unique solution for $t \in [0, 1/2)$. Determine this solution.
- (b) Show that (2), plus the initial condition x(1) = B, has a unique solution for $t \in (1/2, 1]$. Determine this solution.
- (c) Show that the boundary value problem

$$(1-2t) x'(t) + \alpha_1 x(t) = \alpha_2, \quad x(0) = A, \quad x(1) = B$$

has a *continuous* solution for any real *B*, and compute this solution. (From this it follows that the original IVP has infinitely many solutions, one for each *B*.)

3. Consider the system $\frac{dx}{dt} = Ax$, where

$$A = \left(\begin{array}{rrr} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 1 & 0 & -2 \end{array} \right).$$

Show that the solutions to this system all approach the origin as $t \to \infty$.

Hint. Write A = B - 2I, where

$$B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right).$$

What are the eigenvectors of *B*?

4. The equation for the nonlinear pendulum is given by

$$\ddot{\theta} + \sin(\theta) = 0,$$

where θ is the angle between the pendulum and the vertical.

(a) Show that this system has a conserved quantity and determine it.

- (b) Write this equation as a system of first-order ODEs and determine the location and type of all the fixed points of this system.
- (c) Draw the level sets of the conserved quantity; use symmetry to argue that this system has a family of periodic orbits around one of the fixed points.
- (d) Finally, if we add friction to this system, i.e. modify the equation to

$$\ddot{\theta} + c\dot{\theta} + \sin(\theta) = 0$$

for some c > 0, how does this change the system (to wit, how do the types of the fixed points change when the friction is added)?