## MATH 550 COMPREHENSIVE EXAMINATION May 2007

ORDINARY DIFFERENTIAL EQUATIONS AND DISCRETE MAPS **DO ALL PROBLEMS**.

- 1. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO INITIAL VALUE PROBLEMS Let  $f(x) = x^{2/3} \sin(1/x)$  for all  $x \neq 0$  and f(0) = 0.
  - a. Show that the initial value problem dx/dt = f(x), x(0) = 0 has a unique solution.
  - b. Are solutions of the initial value problem with  $x(0) \neq 0$  defined for all time?
  - c. Show that all solutions of the initial value problem with  $x(0) \neq 0$  are bounded.
- 2. LINEAR DIFFERENTIAL EQUATIONS

Let f(X) = AX where A is a 2 x 2 matrix of real constants and X is a vector.

- a. Write down the three real canonical forms for a 2 x 2 real matrix A.
- b. Write down the solution forms for the initial value problem dX/dt = f(X),  $X(0) = X_0$  using the three real canonical forms in part a.
- c. Does this differential equation above generate a flow on the plane?
- 3. Area preserving map

Consider the following map f of the 2-torus T<sup>2</sup> defined by

$$f(x, y) = (y, x + y) \mod 1 \text{ for } 0 \le x, y < 1.$$

- a) Show that f is an area-preserving, orientation reversing map.
- b) Show that there is a countable infinity of periodic points of f.
- c) Show that the periodic points of f are dense in T<sup>2</sup>.
- 4. GRADIENT FLOWS AND AREA-PRESERVING FLOWS

Consider the following system of first order ordinary differential equations:

$$dx/dt = f(x, y)$$
 and  $dy/dt = g(x, y)$ 

where f and g are of class  $C^{\infty}$  and satisfy  $\partial f/\partial x + \partial g/\partial y = 0$  for all (x,y) in the plane.

a. Show that there is a  $C^{\infty}$  real valued function F such that

$$f = \partial F/\partial y$$
 and  $g = -\partial F/\partial x$ .

- b. Show that the local flow of the vector field orthogonal to (f, g) is irrotational; that is, the orthogonal vector field is the gradient field of a real valued function G.
- c. If f and g are defined by  $f(x, y) = 3x^2y^2$  and  $g(x, y) = -2xy^3 3$ , find G(x, y).