MATH 550 COMPREHENSIVE EXAMINATION January 2008

ORDINARY DIFFERENTIAL EQUATIONS AND DISCRETE MAPS **DO ALL FOUR PROBLEMS**

1. AREA PRESERVING MAP

Consider the following map f of the 2-torus T² defined by $f(x, y) = (x + 2y, 2x + 3y) \mod 1$ for $0 \le x, y < 1$.

- a. Show that f is area-preserving.
- b. Is f orientation-preserving?
- c. Show that f has a countable infinity of periodic points.
- d. Show that the periodic points of f are dense in T².

2. HAMILTONIAN SYSTEMS AND AREA-PRESERVING FLOWS

Consider the following system of first order ordinary differential equations:

$$dx/dt = f(x, y)$$
 and $dy/dt = g(x, y)$

where f and g are of class C^{∞} and satisfy $\partial f/\partial x + \partial g/\partial y = 0$ for all (x,y) in the plane.

- a. Show that the local flow of the vector field (f, g) is area-preserving.
- b. Show that there is a C^{∞} real valued function F (the Hamiltonian) such that $f = \partial F/\partial y$ and $g = -\partial F/\partial x$.
- c. If f and g are defined by $f(x, y) = 3x^2y^2$ and $g(x, y) = -2xy^3 3$, find F(x, y).

3. Uniqueness/Nonuniqueness of Solutions of Initial Value Problems

Let $f(x) = x^{2/3} \sin(1/x)$ for $x \ne 0$ and f(0) = 0.

- a. Decide whether the initial value problem dx/dt = f(x), x(0) = 0 has a unique solution. If the solution is unique, then prove it. If not, prove it.
- b. Let $x(0) \neq 0$. Can a solution of the initial value problem become unbounded in x as t increases?
- c. Are solutions of the initial value problem with $x(0) \neq 0$ defined for all time?

4. PLANAR FLOWS

Consider the system of differential equations

$$dx/dt = x^2 - y^2$$
, $dy/dt = 2xy$, $x(0) = x_0$, $y(0) = y_0$.

- a. Solve this initial value problem for $x(t, x_0, y_0)$ and $y(t, x_0, y_0)$.
- b. Describe the phase curves of the system.
- c. Does the system define a flow on the plane? If not on the plane, where is a flow defined?