MATH 550 COMPREHENSIVE EXAMINATION August 2006

ORDINARY DIFFERENTIAL EQUATIONS AND DISCRETE MAPS **DO ALL PROBLEMS**.

1. Area preserving map

Consider the following map f of the 2-torus T² defined by $f(x, y) = (x + y, x + 2y) \mod 1$ for $0 \le x, y < 1$.

- a) Show that f is area-preserving.
- b) Show that f has a countable infinity of periodic points.
- c) Show that the periodic points of f are dense in T^2 .
- 2. Hamiltonian systems and area-preserving flows

Consider the following system of first order ordinary differential equations:

$$dx/dt = f(x, y)$$
 and $dy/dt = g(x, y)$

where f and g are of class C^{∞} and satisfy $\partial f/\partial x + \partial g/\partial y = 0$ for all (x,y) in the plane.

- a. Show that the local flow of the vector field (f, g) is area-preserving.
- b. Show that there is a C^{∞} real valued function F (the Hamiltonian) such that $f = \partial F/\partial y$ and $g = -\partial F/\partial x$.
- c. If f and g are defined by $f(x, y) = 3x^2y^2$ and $g(x, y) = -2xy^3 3$, find F(x, y).
- 3. Let $f(x) = x^{2/3}$ for for $x \ne 0$ and f(0) = 0.
 - a. Decide whether the initial value problem dx/dt = f(x), x(0) = 0 has a unique solution.
 - b. Can any solution of the initial value problem with $x(0) \neq 0$ become unbounded in x as t increases?
 - c. Are solutions of the initial value problem with $x(0) \neq 0$ defined for all time?
- 4. Let $f(x) = x^{2/3} \sin(1/x)$ for $x \ne 0$ and f(0) = 0.
 - a. Decide whether the initial value problem dx/dt = f(x), x(0) = 0 has a unique solution. If the solution is unique, then prove it. If not, prove it.
 - b. What conditions does f satisfy in a neighborhood of the origin?
 - c. Can any solution of the initial value problem with $x(0) \neq 0$ become unbounded in x as t increases?
 - d. Are solutions of the initial value problem with $x(0) \neq 0$ defined for all time?