Do five out of six problems. Each problem is worth 20 points. Clearly indicate which problems you are doing. You must justify all claims to receive credit.

- **I.** (i) Find a 1-1 analytic mapping f of $\{z:|z|<1\}$ onto $\mathbb{C}\setminus\{x:x\geq0\}$ such that f(0)=-1.
- (ii) Determine with proof all analytic maps f of $\{z:|z|<1\}$ into $\mathbb{C}\setminus\{x:x\geq 0\}$ such that f(0)=-1 and $f(\frac{1}{2})=-\frac{1}{9}$.
- II. Evaluate

$$\int_0^\infty \frac{\cos x}{(4+x^2)^2} \, dx$$

Justify all estimates.

III. Let f be an analytic mapping defined on an open set containing $\{z: |z| \leq 1\}$. Show that the quantity

$$\int_{\{z=x+iy:|x+iy|\leq 1\}} f(x+iy) \, dx \, dy$$

depends only on f(0)

IV. Does

$$g(z) = \frac{\sin z}{z^{100}}$$

have an antiderivative in the domain $\{z: 1 < |z| < 2\}$? Justify your answer.

V. Let f be a meromorphic function in \mathbb{C} and let γ be a simple closed curve in \mathbb{C} on which f does not take on the values 0 or ∞ . Prove that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N - P,$$

where N is the number of zeros of f inside γ counting multiplicity and P is the number of poles of f inside γ counting multiplicity.

- **VI.** (i) Define the Weierstrass primary factor $E_p(z)$ of genus p for p = 0, 1, 2, ...
- (ii) Show that

$$\prod_{n=1}^{\infty} E_{n-1} \left(\frac{1}{nz} \right)$$

defines an analytic function on $\{z : \operatorname{Re} z > 0\}$ which vanishes precisely on

$$\{\frac{1}{n}: n=1,2,3\ldots\}.$$