Math 542 Comprehensive Examination May 2014

Solve all eight problems. All problems have the same weight. Justify all claims.

Let $\mathbb D$ denote the open unit disc $\{z\in\mathbb C\colon |z|<1\}$ in the complex plane and $\operatorname{Re} z$, $\operatorname{Im} z$ denote the real and respectively imaginary part of $z\in\mathbb C$.

1. Is there an analytic unction f in the unit disc $\mathbb D$ such that

$$f\left(\frac{1}{n}\right)^2 = \frac{1}{n}$$
, $n = 2, 3, 4, \dots$?

- 2. If $f: \mathbb{D} \to \mathbb{D}$ is analytic and has order 2 at z = 0, what is the sharp upper bound for $|f(\frac{1}{2})|$?
- 3. Calculate

$$I = \int_0^\pi \frac{d\theta}{3 + \sin(2\theta)}.$$

4. Find the number of solutions in D of

$$z^4 - 7z^3 - 2z^2 + z - 3 = 0.$$

5. Can the function

$$f(z) = z \sin\left(\frac{1}{z}\right)$$

be uniformly approximated by polynomials on compact subsets of $\mathbb{C} \setminus \{0\}$? Prove or give a counterexample.

- 6. Is there a positive harmonic function u in the first quadrant $I = \{z : \text{Re } z > 0, \text{Im } z > 0\}$, such that u is continuous up to the boundary of I and $u(x,0) = x^2$ for all x > 0 and $u(0,iy) = y^2$ for all y > 0?
- 7. Which of the following two families of analytic functions in D is normal:

$$\mathfrak{F}_1 = \left\{ f \in A(\mathbb{D}) : \iint_{\mathbb{D}} |f(x+iy)|^2 dx \, dy \leq 1 \right\},$$

$$\mathfrak{F}_2 = \left\{ f \in A(\mathbb{D}) : \iint_{\mathbb{D}} |f(x+iy)|^2 dx \, dy < \infty \right\} ?$$

8. Prove the identity

$$\frac{\pi}{\sin(\pi z)} = \frac{1}{z} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{z-n} + \frac{1}{z+n} \right).$$