Math 542 Comprehensive Examination May 2013

Each problem is worth 10 points. Justify all the claims that you make.

Let \mathbb{D} denote the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$, and \mathbb{T} the unit circle $\{z \in \mathbb{C} : |z| = 1\}$.

- 1. Suppose that f is an analytic function in a domain D such that $f'(z_0) = 0$ for some $z_0 \in D$. Prove that f is not one-to-one in any neighborhood of z_0 .
- 2. Let $f: \mathbb{D} \setminus \{0\} \to \mathbb{C}$ be an analytic function. Is it true that f has a removable singularity at 0 if and only if the function e^f has a removable singularity at 0?
- 3. Find the radius of convergence of the power series

$$\sum_{k=1}^{\infty} k^k z^{k^2}.$$

- 4. Suppose that f and g are entire functions and there exists R > 0 such that $|f(z)| \le |g(z)|$ for all z with |z| > R. Prove that f/g is a rational function.
- 5. Evaluate

$$\int_0^{\pi/2} \frac{d\theta}{3 - \cos^2 \theta}.$$

6. Find a conformal map from the complement of the cross

$$\mathbb{C} \setminus (\{z = x + i0 \colon -1 \le x \le 1\} \cup \{z = 0 + iy \colon -1 \le y \le 1\})$$

onto the complement of the closed unit disc $\mathbb{C} \setminus \overline{\mathbb{D}}$.

- 7. Let $u: \mathbb{D} \setminus \{0\} \to \mathbb{R}$ be a harmonic function. Prove that there exists a unique real number α such that $u(z) \alpha \ln |z|$ is the real part of an analytic function $f: \mathbb{D} \setminus \{0\} \to \mathbb{C}$.
- 8. Let $f: \overline{\mathbb{D}} \to \mathbb{C}$ be a continuous function that is analytic in \mathbb{D} . Assume that f maps the unit circle \mathbb{T} into $\mathbb{T} \setminus \{-1\}$. Prove that f is a constant.