Math 542 Comprehensive Examination May 18, 2011

Solve **any eight** of the following **nine** problems. Each problem is worth 10 points. \mathbb{D} denotes the open unit disc in the complex plane \mathbb{C} .

1. Is there an analytic function

$$f(z) = u(x, y) + iv(x, y), \quad z = x + iy,$$

in a neighborhood of z = 0 such that

$$u(x,y) = x^3 + xy^2?$$

Justify your claim.

- 2. Prove that every function u, harmonic on a simply connected domain Ω , can be represented in the form $u(x,y) = \log |f(z)|$ with z = x + iy, where f(z) is analytic and non-vanishing on Ω . Is the result true when Ω is an annulus?
- 3. Find the number of solutions to the equation

$$\log z + 8z^2 = 10$$

in Re z > 0, where $\log z$ denotes the principal branch.

4. Prove that the function

$$f(z) = \sum_{n=0}^{\infty} z^{2^n} = 1 + z^2 + z^4 + z^8 + \cdots, \quad z \in \mathbb{D},$$

does not extend analytically to any open set strictly larger than the (open) disk \mathbb{D} .

5. Compute

$$\operatorname{Re} \int_{\gamma} \frac{\sqrt{z}}{z+1} dz,$$

where γ is a quarter-circle $\{z: |z| = 1, \text{ Re } z \ge 0, \text{Im } z \ge 0\}$ oriented from 1 to i, and \sqrt{z} denotes the principal branch.

6. Let $f: \mathbb{D} \to \{z \in \mathbb{C} : \operatorname{Re} z > 0\}$ be analytic. Show that

$$\frac{1-|z|}{1+|z|}|f(0)| \leq |f(z)| \leq \frac{1+|z|}{1-|z|}|f(0)|, \quad \forall z \in \mathbb{D},$$

and

$$|f'(0)| \leq 2\operatorname{Re} f(0).$$

- 7. Find a conformal map from $\{z\in\mathbb{C}\colon |z|>1, \mathrm{Re}\,z>0, \mathrm{Im}\,z>0\}$ to the upper half-plane.
- 8. Let U be a domain in \mathbb{C} and $z_0 \in U$. Let \mathcal{F} be the family of analytic functions f in U such that $f(z_0) = -1$ and $f(U) \cap \mathbb{Q}_{\geq 0} = \emptyset$, where $\mathbb{Q}_{\geq 0}$ denotes the set of non-negative rational numbers. Is \mathcal{F} a normal family? Justify your claim.
- 9. Let u be a continuous real-valued function in the closure of the unit disc \mathbb{D} that is harmonic in \mathbb{D} . Assume that the boundary values of u are given by

$$u(e^{it}) = 5 - 4\cos t.$$

Furthermore, let v be a harmonic conjugate of u in \mathbb{D} such that v(0) = 1. Find u(1/2) and v(1/2).