Math 542, Comprehensive Examination January 18, 2012

Solve all eight problems. Each problem is worth 10 points.

Notation: $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}, \mathbb{H} = \{z \in \mathbb{C} : \operatorname{Re} z > 0\}, \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$

1) Is there an analytic function $f: \mathbb{H} \to \mathbb{C}$ such that

Re
$$f(z) = x \arctan\left(\frac{y}{x}\right) + \frac{y \log(x^2 + y^2)}{2}$$
 for all $z = x + iy \in \mathbb{H}$?

Justify your claim.

2) Evaluate the integral

$$\int_{\gamma} \frac{e^{-z}}{z^2 - 2} dz,$$

where γ is the imaginary axis with positive upward orientation.

- 3) Find a conformal map of $\mathbb{H} \setminus \{z = x + iy : x \ge 1, y = 0\}$ onto \mathbb{H}
- 4) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of entire functions. Assume that this sequence converges to a polynomial f of degree $d \geq 1$ uniformly on compact subsets of \mathbb{C} .
 - (i) Prove that there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \geq N$, the function f_n has at least d zeroes, counting multiplicity.
 - (ii) Is it true that there must exist $N \in \mathbb{N}$ such that each f_n , $n \geq N$, has exactly d zeroes? Justify your claim.
- 5) Let f be an analytic function in \mathbb{D} , and assume that

$$\left| f\left(\frac{1}{n}\right) \right| \le \frac{1}{2^n}$$
 for all $n \in \mathbb{N}, \ n \ge 2$.

Prove that f vanishes identically in \mathbb{D} .

- 6) Let f be an analytic function in \mathbb{D} with $|f(z)| \leq M$ for some M > 0 and all $z \in \mathbb{D}$. Prove that $|f'(1/2)| \leq 4M/3$. Is this bound sharp? Justify your claim.
- 7) Let G(z) be defined by the infinite product

$$G(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z}{n} \right) e^{-z/n}.$$

- (i) Show that G(z) defines an entire function.
- (ii) Show that $\pi z G(z)G(-z) = \sin(\pi z)$ for all $z \in \mathbb{C}$.
- 8) Let $h(e^{i\theta})$ be a continuous function on the unit circle T. Show that

$$\tilde{h}(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(\theta - \varphi)} h(e^{i\varphi}) d\varphi$$

defines a harmonic function in \mathbb{D} and that $\lim_{\substack{z \to z_0 \\ z \in \mathbb{D}}} \tilde{h}(z) = h(z_0)$ for all $z_0 \in \mathbb{T}$.