Math 542 Comprehensive Examination January 19, 2011

Solve any eight of the following nine problems.

 $\mathbb D$ denotes the open unit disc disc in the complex plane $\mathbb C$.

1. Compute

$$I = \int_{-\infty}^{\infty} \frac{\cos(ax)}{(1+x^2)^2} \, dx,$$

justifying the relevant estimates. Here a denotes a positive constant.

2. How many roots of the equation

$$z^4 + 3z - 5 = 0$$

are there in the annulus $A = \{z \in \mathbb{C} : 1 < |z| < 2\}$?

- 3. Find a conformal map of $\{z \in \mathbb{C} : \operatorname{Im}(z) > 0, |z| < 1\}$ onto $\{z \in \mathbb{C} : 0 < \operatorname{Im}(z) < 1\}$.
- 4. Suppose that $f: \mathbb{D} \to \mathbb{D}$ is an analytic function.
 - (i) Prove that

$$\left|\frac{f(z_1)-f(z_2)}{1-\overline{f(z_1)}\,f(z_2)}\right|\leqslant \left|\frac{z_1-z_2}{1-\overline{z_1}\,z_2}\right|\quad\text{for all }z_1,z_2\in\mathbb{C}.$$

(ii) Prove that

$$|f'(z_0)| \leqslant \frac{1 - |f(z_0)|^2}{1 - |z_0|^2}$$
 for all $z_0 \in \mathbb{D}$.

5. Suppose that f is an entire function and there $A, R_0 > 0$ positive constants and m positive integer such that

$$|f(z)| \leqslant A|z|^m$$
 whenever $|z| \geqslant R_0$.

Prove that f is a polynomial of degree at most m.

6. Show that for each $\delta \in (0,1)$ there exists a constant $C = C(\delta) > 0$ such that, for every harmonic function $u : \mathbb{D} \to [-1,1]$,

$$\sup_{|z| \le \delta} \left| \frac{\partial u}{\partial x} \right| \le C.$$

Provide an explicit value for $C(\delta)$.

7. Let f be a bounded analytic function on \mathbb{D} with $f(0) \neq 0$. Assume that the set (s_n) of zeros of f (repeated with multiplicities) is infinite. Prove that

$$\sum_{n} (1 - |s_n|) < \infty.$$

8. Let $(a_n)_{n=1}^{\infty}$ be a sequence in $\mathbb D$ such that

$$\sum_{n=1}^{\infty} (1 - |a_n|) < \infty.$$

Find a sequence $(b_n)_{n=1}^{\infty}$ such that

$$\prod_{n=1}^{\infty} \left(b_n \frac{a_n - z}{1 - \bar{a}_n z} \right)$$

converges uniformly on compact sets in \mathbb{D} to an analytic function f whose only zeroes are a_1, a_2, a_3, \ldots

9. Let M > 0. Prove that

$$\mathfrak{F} = \left\{ f: \mathbb{D} \to \mathbb{C} \colon f \text{ analytic, } \sup_{0 \leqslant r < 1} \int_0^{2\pi} |f(re^{it})| \, dt \leqslant M \right\}$$

is a normal family.