Math 542 Comprehensive Examination August 20, 2012

 $\mathbb D$ denotes the open unit disc $\{z\in\mathbb C\colon |z|<1\}$ and $\mathbb T$ the unit circle $\{z\in\mathbb C\colon |z|=1\}$.

Solve any eight of the following nine problems. Each problem is worth 10 points.

1. Find the radius of convergence of the series

$$\sum_{n=1}^{\infty} \frac{z^{n^3}}{n^4}.$$

Justify your claim.

2. Use the Residue Theorem to calculate the integral

$$\int_0^\infty \frac{x^{3/2}}{1+x^3} \, dx.$$

Justify all estimates.

3. Find an explicit conformal mapping of $\mathbb{C} \setminus [0,1]$ onto $\mathbb{D} \setminus \{0\}$.

4. Let f be an analytic function in $S = \{z \in \mathbb{C} : a < \operatorname{Re} z < b\}$ for some a < b. We suppose that

 $|f(z)| \le \frac{C}{|z|^{\alpha}}$

for all $z \in S$, some positive constant C, and a constant $\alpha > 1$. Prove that the function g defined by

$$g(x) = \int_{-\infty}^{\infty} f(x+iy)dy$$

is constant in (a, b).

Is it enough to requite that α is positive? Explain.

5. Find the family of all functions f analytic in $\mathbb D$ and continuous on the closed unit disc $\overline{\mathbb D}$, such that

$$|f(z)| = e^{\operatorname{Re} z}$$

for all $z \in \mathbb{T}$.

6. Prove that if non-constant real-valued functions u, v, and their product uv are harmonic in a domain D, then there exists a real constant c such that the function u + icv is analytic in D.

Hint. Consider the function f/g, where $f = u_x - iu_y$ and $g = v_x - iv_y$.

1

7. Suppose a function $f: \mathbb{D} \to \mathbb{C}$ is analytic, bounded, and non-constant. Let (s_n) be the zeros of f counted with multiplicities. Show that

$$\sum_{n} (1 - |s_n|) < \infty.$$

- 8. (i) (7 points) Construct an entire function with zeros located exactly at $s_n = \sqrt{n}$, $n \in \mathbb{N}$, and with multiplicity n^2 . Justify your answer.
 - (ii) (3 points) What is the general form of such a function? Justify your answer.
- 9. (i) (5 points) State Runge's approximation theorem.
 - (ii) (5 points) Let A be an open annulus. Show that there exists a function f, analytic in A and with the property that there is no sequence (P_n) of analytic polynomials with $\sup_K |f P_n| \to 0$ for any compact set $K \subset A$.