Math 542 Comprehensive Examination August 18, 2011

Solve any eight of the following nine problems. Each problem is worth 10 points. Below, $B(z_0, r)$ denotes the open disc centered at $z_0 \in \mathbb{C}$ of radius r > 0.

1. Evaluate the integral

$$I = \int_0^\infty \frac{\sin^2 x}{x^2} \ dx.$$

Justify the estimates that you are using.

2. Let f be an analytic function on C. Assume that there exists $n \in \mathbb{N}$ and a function $\phi: (0, \infty) \to [0, \infty)$ such that

$$\lim_{r\to\infty}\frac{\phi(r)}{r^n}=0,$$

and

$$\forall r > 0, \forall z \in B(0, r), \quad 0 < |f(z)| \le \phi(r).$$

Prove that f is a constant function.

3. Let $d, n \in \mathbb{N}$, let N(n) denote the number of solutions of the equation

$$2nz^d + nz + 1 = 0$$

in B(0,1). Find

$$\lim_{n\to\infty}N(n).$$

Justify your claim.

4. Prove that every conformal map of the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ onto itself can be expressed in the form

$$z\mapsto \frac{az+b}{cz+d}$$

for some $a, b, c, d \in \mathbb{R}$ with ad - bc = 1.

5. Let D ⊆ C be a domain and z₀ ∈ C. Assume that (f_n) is a sequence of analytic functions in D such that lim_{n→∞} f_n(z₀) = w₀ ∈ C and the sequence of derivatives (f'_n) converges uniformly on compact subsets of D to a function g.
Is it true that there exists an analytic function f in D such that f_n → f uniformly on compact subsets of D? Prove or give a counterexample.

6. Prove that

$$\frac{\pi^2}{\sin^2(\pi z)} = \sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}, \qquad z \in \mathbb{C}.$$

- 7. Let $H = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$ and $\mathcal{F} = \{f : H \to H : f \text{ analytic, } f(1) = 1\}.$
 - (i) Show that \mathcal{F} is a normal family.
 - (ii) Show that there exists $g \in \mathcal{F}$ with $|g'''(4)| = \sup_{f \in \mathcal{F}} |f'''(4)|$.
- 8. (i) Let (u_n) be a sequence of harmonic functions in a domain D such that $u_n \to u$ uniformly on compact subsets of D. Prove that u is harmonic in D.
 - (ii) Show that if u is harmonic in D, then its partial derivatives u_x and u_y are harmonic in D.
- 9. Let A_r denote the annulus $A_r = \{z \in \mathbb{C} : 1 < |z| < r\}, r > 1$. Show that if the annuli A_{r_1} and A_{r_2} are conformal, then $r_1 = r_2$.