Math 540 Comprehensive Examination May 16, 2017

Do five out of six problems. Each problem is worth 20 points. Justify all claims.

1. Let (X, \mathcal{M}, μ) be a finite measure space (i.e. $\mu(X) < \infty$), let $\alpha > 0$, and let $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{M}$ be such that $\mu(A_n) \ge \alpha$ for each $n \in \mathbb{N}$. Put

$$A := \{ x \in X : \exists^{\infty} n \ x \in A_n \},\,$$

where \exists^{∞} means "for infinitely many $n \in \mathbb{N}$ ".

- (a) Show that $A \in \mathcal{M}$.
- (b) Prove that $\mu(A) \geq \alpha$.
- (c) Give an example of a measure space (X, \mathcal{M}, μ) with $\mu(X) = \infty$ and a sequence $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{M}$ such that $\mu(A_n) \geq 1$ for each $n \in \mathbb{N}$, but $A = \emptyset$.
- 2. Compute

$$\lim_{k \to \infty} \int_{-\infty}^{\infty} \frac{1}{1 + e^{-kx}} \frac{1}{1 + x^2} dx.$$

Justify your computation.

- 3. Let (X, \mathcal{M}, μ) be a measure space and, for each $n \in \mathbb{N}$, let $f_n, f : X \to [0, \infty]$ be non-negative measurable functions. Suppose that $f_n \to_{\mu} f$ (i.e. converges in measure).
 - (a) Prove that, for each subsequence $(n_k)_k$, there is a further subsequence $(n_{k\ell})_\ell$ such that

$$\int f d\mu \leq \liminf_{\ell \to \infty} \int f_{n_{k_{\ell}}} d\mu.$$

(b) Deduce that $\int f d\mu \leq \liminf_{n \to \infty} \int f_n d\mu$.

Definition. Let (X, \mathcal{M}, μ) be a measure space and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable functions on it. Call $(f_n)_{n \in \mathbb{N}}$ uniformly absolutely continuous in L^1 if for every $\varepsilon > 0$ there is $\delta > 0$ such that for every measurable $A \subseteq X$, $\mu(A) < \delta \Longrightarrow \forall n \in \mathbb{N}$ $\int_A |f_n| d\mu < \varepsilon$. Say that $(f_n)_{n \in \mathbb{N}}$ uniformly vanishes at ∞ in L^1 if for every $\varepsilon > 0$ there is a measurable $A \subseteq X$ with $\mu(A) < \infty$ such that $\forall n \in \mathbb{N}$ $\int_{A^c} |f_n| d\mu < \varepsilon$.

- **4.** Let $(f_n)_n \subseteq L^1(X, \mathcal{M}, \mu)$. Assume that $(f_n)_n$ converges to f in measure, that $(f_n)_n$ is uniformly absolutely continuous in L^1 , and that $(f_n)_n$ uniformly vanishes at ∞ in L^1 . Prove that $(f_n)_n$ converges to f in L^1 .
- 5. Let $p \in (1, \infty)$ and let q be its Hölder conjugate exponent. Prove that for any $f \in L^p(\mathbb{R}, \lambda)$ and $g \in L^q(\mathbb{R}, \lambda)$, f * g is uniformly continuous and $(f * g)(x) \to 0$ as $|x| \to \infty$.
- 6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $K: X \times X \to \mathbb{R}$ be nonnegative and measurable with respect to $\mathcal{M} \otimes \mathcal{M}$. Suppose there exists a positive $M \in \mathbb{R}$ such that

$$\int_X K(x,y) \, d\mu(y) \le M \text{ and } \int_X K(x,y) \, d\mu(x) \le M$$

for each $x \in X$. For a measurable $f: X \to \mathbb{R}$ and $x \in X$, put

$$Tf(x) = \int_X K(x, y) f(y) d\mu(y)$$

if the integral exists.

(a) Fix x such that Tf(x) exists. Prove that

$$\left| \int_X K(x,y) f(y) \, d\mu(y) \right| \le M^{1/q} \left(\int_X K(x,y) |f(y)|^p \, d\mu(y) \right)^{1/p}$$

where q denotes the Hölder conjugate exponent to p.

(b) Prove that for any $p \in (1, \infty)$ and $f \in L^p(X, \mathcal{M}, \mu)$, $||Tf||_p \leq M||f||_p$.