Math 540 Comprehensive Examination, May 2019

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

1. Let $\epsilon > 0$ and a, q be relatively prime natural numbers. Define (a, q)-type set $E_{a/q}$ by

$$E_{a/q} = \left\{ x \in \mathbb{R} : |x - \frac{a}{q}| \le \frac{1}{q^{2+\epsilon}} \right\}.$$

Show that those points in \mathbb{R} belonging to infinitely many (a,q)-type sets form a zero Lebesgue measure set.

2. Let $\phi_n:[0,1]\to\mathbb{R}$ be a sequence of nondecreasing functions so that $\sum_{n=1}^{\infty}\phi_n(0)$ and $\sum_{n=1}^{\infty} \phi_n(1)$ are convergent series. Show that

i) The series $f(x) = \sum_{n} \phi_n(x)$ is a well-defined measurable function on [0,1], and ii) for m a.e. $x \in [0,1]$, the series $\sum_{n} \phi'_n(x)$ converges to f'(x).

3. Prove that

$$\lim_{n\to\infty}\int_0^1 e^{int^2}dt=0.$$

4. Let $1 \leq p < \infty$. Suppose that $\{f_n\}$ be a sequence of real valued measurable functions on a measure space (X, \mathcal{B}, μ) , which satisfies

$$||f_{n+1} - f_n||_{L^p(X)} \le \frac{1}{2^n}$$

for all $n \in \mathbb{N}$. Prove that $\{f_n\}$ converges to a function, $f \in L^p(X)$, μ almost everywhere.

5. Let $f_1, f_2, f_3 \in L^{\frac{3}{2}}(\mathbb{R}, m)$. Prove that

$$\int_{\mathbb{R}\times\mathbb{R}} |f_1(x_1)f_2(x_2)f_3(x_1+x_2)| dx_1 dx_2 \le \prod_{j=1}^3 ||f_j||_{L^{\frac{3}{2}}}.$$

6. Let (X, \mathcal{M}, μ) be a <u>finite</u> measure space. Given measurable $f: X \to \mathbb{C}$, let E_f denote its distribution function:

$$E_f(\lambda) = \mu(\lbrace x : |f(x)| > \lambda \rbrace), \quad \lambda > 0.$$

Assume that $f_n: X \to \mathbb{C}$ is a sequence of measurable functions satisfying

i) $f_n \to f \ \mu \ a.e.$,

ii) there exists a Lebesgue measurable function $E:(0,\infty)\to[0,\infty)$ with $\int_0^\infty E(\lambda)dm(\lambda)<$ ∞ such that $E_{f_n}(\lambda) \leq E(\lambda)$ for each n and $\lambda > 0$.

Prove that $f_n \to f$ in L^1 .

Hint: It is crucial that μ is a finite measure.