Math 540 Comprehensive Examination May 17, 2013

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

- 1. Let $f \in L^p(\mathbb{R})$. Prove that for any $\varepsilon > 0$, there exists a measurable set E such that $m(E) < \infty \text{ and } ||f||_p \le ||f\chi_E||_p + \varepsilon.$
- 2. Let $\{f_n\}$ be a sequence of complex-valued measurable functions on a measure space (X, \mathcal{A}, μ) . Determine whether the following statements are true. For the false statement, provide a counterexample. For the true one, prove it.
- a) $\{f_n\}$ converges to f in L^1 , then $f_n \to f$ in measure.
- b) $f_n \to f$ a.e., then $f_n \to f$ in measure.
- c) $f_n \to f$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ in measure.
- 3. Let f be a measurable function on (X, \mathbb{A}, μ) . Determine whether the following statements are true. For the false statement, provide a counterexample. For the true one, prove
- a) if $f \in L^{\infty}$, then $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$. b) if $f \in L^{p}$ for all $\infty \geq p \geq 1$, then $||f||_{\infty} = \lim_{p \to \infty} ||f||_{p}$.
- **4.** Let E be a Lebesgue measurable subset of \mathbb{R} . Prove that

$$\lim_{x\to 0} m(E\cap (E+x)) = m(E).$$

Here $E + x = \{y + x : y \in E\}$

5. Assume that $f: \mathbb{R} \to \mathbb{R}$ is nondecreasing,

$$\int_{\mathbb{R}} f' = 1, \quad \lim_{x \to -\infty} f(x) = 0, \text{ and } \lim_{x \to \infty} f(x) = 1.$$

Prove that f is AC on any interval [a, b].

6. Let f_n be a sequence of Lebesgue measurable functions on the interval [0,1]. Assume that f_n converges to a function f m almost everywhere, and that

$$\int_{[0,1]} |f_n|^2 dm \le 1$$

for each n. Prove that f_n converges to f in L^1 .

Hint: Use Egoroff's thm.