Math 540 Exam

May, 2011

Calculators, books and notes are not allowed!

- 1. Prove by defintion that if μ_1, \dots, μ_n are measures on $(X, \mathcal{A}), a_1, \dots, a_n \in [0, \infty)$, then $\sum_{j=1}^n a_j \mu_j$ is a measure on (X, \mathcal{A}) .
- 2. Compute $\lim_{k\to\infty} \int_0^k x^n (1-k^{-1}x)^k dx$. Here $n\in\mathbb{N}$.
- 3. Let μ^* be an outer measure on X. $\{A_j\}$ be a sequence of disjoint μ^* -measurable sets. Prove that $\mu^*(E\cap (\cup_j A_j))=\sum_j \mu^*(E\cap A_j)$.
- 4. Suppose that $\{f_n\}$ is a sequence of positive measurable functions on \mathcal{R} , $\lim_{n\to\infty} f_n(x) = f(x)$ at every $x\in\mathbb{R}$, and $\int_{\mathbb{R}} f = \lim_{n\to\infty} \int_{\mathbb{R}} f_n < \infty$. Prove that $\int_E f = \lim_{n\to\infty} \int_E f_n$ for all measurable sets E.
- 5. Let E be a Lebesgue measuarble set in \mathbb{R} and m(E) > 0. Prove that for any $1 > \varepsilon > 0$, there is an open interval I such that $m(E \cap I) > \varepsilon m(I)$.
- 6. Let $f \in L^p(\mathbb{R})$ with $1 \leq p < \infty$. Prove that

$$\lim_{\lambda \to 0} \lambda^p m(\{x \in \mathbb{R} : |f(x)| > \lambda\}) = \lim_{\lambda \to \infty} \lambda^p m(\{x \in \mathbb{R} : |f(x)| > \lambda\}) = 0$$