Math 540 Exam

May, 2010

Calculators, books and notes are not allowed!

1. Show that for p > 1,

$$\lim_{n\to\infty} \int_1^n \frac{\left(1-\frac{t}{n}\right)^n}{t^p} dm(t) = \int_1^\infty \frac{e^{-t}}{t^p} dm(t) .$$

Here m is the Lebesgue measure on \mathbb{R} .

2. Let

$$f(x) = \begin{cases} x \sin(1/x) & \text{for } 0 < x \le \infty \\ 0 & \text{for } x = 0 \end{cases}$$

- (a) Is f is uniformly continuous on $[0, \infty)$? Prove your answer!
- (b) Is f of bounded variation on $[0, \infty)$? Prove your answer!
- 3. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R})$. Prove that

$$\lim_{\delta \to 0} \int_{\mathbb{R}} |f(x+\delta) - f(x)|^p dx = 0.$$

(Hint: Use the fact that C_c^0 is dense in L^p . Here the space C_c^0 is the set consisting of all continuous functions with compact support.)

- 4. (a) State Egoroff's theorem.
- (b) State the Dominated Convergence Theorem.
- (c) Prove the Dominated Convergence Theorem.
- 5. Let m be Lebesgue measure on $\mathbb R$. A sequence $\{f_n\}$ of measurable functions on $\mathbb R$ is said to converge in measure to the measurable function f if, given $\varepsilon > 0$, there exists an N such that

$$m\left(\left\{x\in\mathbb{R}:\left|f_{n}(x)-f(x)\right|>\varepsilon\right\}
ight)<\varepsilon$$

for all $n \geq N$. Prove that

- a) If $f_n \in L^p(\mathbb{R})$ and $||f_n f||_p \to 0$ for some $1 \le p \le \infty$, then $f_n \to f$ in measure.
- b) If $f_n \to f$ in measure, then $\{f_n\}$ has a subsequence which converges to f a. e.
- 6. Let $\mathbb Q$ be the set of all rational numbers. A coset of $\mathbb Q$ in additive group $\mathbb R$ is a set $x+\mathbb Q=$ $\{y\in\mathbb{R}:y=x+r \text{ for some }r\in\mathbb{Q}\}.$ Let E be a set that contains exactly one point from each coset of \mathbb{Q} in \mathbb{R} . Prove that
- (a) $(r_1 + E) \cap (r_2 + E) = \emptyset$ if $r_1, r_2 \in \mathbb{Q}$ and $r_1 \neq r_2$
- (b) $\mathbb{R} = \bigcup_{r \in \mathbb{Q}} (r + E)$.
- (c) Prove that if $F \subset \mathbb{R}$ is a set such that every subset of F is Lebesgue measurable, then Lebesgue measure of F is 0.