Math 540 Comprehensive Examination May 12, 2008

Solve problems (1),(2),(3) and (4). Also solve one of the problems (5),(6) or (7). In the following m stands for the Lebesgue measure on \mathbb{R} .

Good luck

Part I (Solve all problems)

- 1) Answer the following questions. Give short justifications for your answers.
 - (a) (7 pts) State Fatou's Lemma and give an example for strict inequality.
 - (b) (6 pts) Find a function of bounded variation which is not absolutely continuous.
 - (c) (7 pts) Find a sequence $(f_n) \subset L^2[0,1]$ such that $||f_n||_2 = 1$ and

$$\lim_{n} \int_{\{0,1\}} f_n g \, dm = 0, \qquad \forall g \in L^2[0,1].$$

2) (a) (10 pts) Let $f \in L^4[0, 1]$. Show that

$$\alpha_4(f) = \sup_{\lambda>0} \lambda^4 m(\{x: |f(x)| > \lambda\}) \le ||f||_4^4.$$

- (b) (10 pts) Find an example of a measurable function f such that $\alpha_4(f)$ is finite, but f does not belong to $L^4[0,1]$.
- 3) (a) (15 pts) Let f be absolutely continuous on compact intervals and $f' \in L^p(\mathbb{R})$, 1 . Show that

$$\sum_{n=-\infty}^{\infty} |f(n+1) - f(n)|^p < \infty.$$

- (b) (5 pts) Is (a) still true when f is continuous of bounded variation on every compact interval and $f' \in L^p(\mathbb{R})$?
- 4) (20 pts) Suppose $1 and <math>f \in L^p((0, \infty), m)$. Let

$$F(x) = \frac{1}{x} \int_0^x f(t) dm(t).$$

Show that

$$||F||_p \le \frac{p}{p-1}||f||_p.$$

Hint: One possible way is to assume first that f is continuous with compact support. Integration by parts gives

$$\int_0^\infty F(x)^p \, dm(x) \ = \ -p \int_0^\infty F(x)^{p-1} x F'(x) \, dm(x).$$

What is xF'(x)?

Part II (Solve one of the following three)

- 5) (20 pts) Let f_n , f be functions in $L^1(\mathbb{R})$ and C be a constant such that $||f_n f||_1 \leq \frac{C}{n^2}$ holds for all $n \geq 1$. Show that (f_n) converges to f almost everywhere.
- 6) (20 pts) Let $f:[a,b] \to [0,\infty)$ be measurable and $0<\alpha \leq 1.$ Show that

$$\lim_{n} \int_{a}^{b} n \left(\left(1 + \frac{f(x)}{n} \right)^{\alpha} - 1 \right) dm(x)$$

exists and identify the limit.

7) (20 pts) Let $f \in L^{\infty}(\mathbb{R})$ be real-valued. Show that the essential range of f, defined as

$$R_f \ = \ \{y: \forall \varepsilon > 0, \ m(\{x: |f(x)-y|<\varepsilon\}) > 0\},$$

is a compact subset in \mathbb{R} .