Solve all four problems in Part I and one problem in Part II. Indicate your choice. Credit will be given only for <u>one</u> problem in Part II. Each problem is worth 20 points. m denotes the Lebesgue measure on \mathbb{R} .

Part I

- I. Let $f \in L^1([0,1])$. For $t \ge 0$, let $F(t) = \int_0^1 x e^{-t/x} f(x) dm(x)$.
- (i) (6 points) Prove that F(t) is finite for all $t \geq 0$.
- (ii) (7 points) Prove that $F:[0,\infty)\to\mathbb{R}$ is continuous.
- (iii) (7 points) Is F differentiable? If so, calculate F'(t) for t>0 and $\lim_{h\to 0^+} \frac{F(h)-F(0)}{h}$.
- II. Decide whether each of the following statements is true or false. Justify your answer with a short proof if the statement is true or a counterexample if it is false. (5 points each)
- (a) Let (f_n) be a sequence in $L^p([0,1])$ which converges in L^p to $f \in L^p([0,1])$. Then (f_n) converges to f in measure. (A sequence (g_n) is said to converge in measure to g if $\lim_{n\to\infty} m(\{x: |g_n(x)-g(x)| \geq \epsilon\}) = 0$ for every $\epsilon > 0$.)
- (b) If $f:[a,b]\to\mathbb{R}$ is absolutely continuous and one-to-one, then f^{-1} is absolutely continuous.
- (c) If $f:[0,1]\to\mathbb{R}$ is a measurable function so that $\int_E f\,dm=0$ for all measurable sets $E\subset[0,1]$, then f=0 almost everywhere.
- (d) If $f:[0,1]\to\mathbb{R}$ is continuous, then f is of bounded variation.
- III. For $n \in \mathbb{N}$, let $h_n = \sum_{j=1}^n (-1)^j \chi_{[(j-1)/n,j/n]}$. Show that $\lim_{n\to\infty} \int_{[0,1]} f h_n \, dm = 0$ for every $f \in L^1([0,1])$. Here χ_E denotes the characteristic function of the set E.
- **IV.** (i) (10 points) Let $f:[0,1] \to \mathbb{R}$ be a continuous function which is absolutely continuous on $[\epsilon, 1]$ for every $0 < \epsilon < 1$, and of bounded variation on [0, 1]. Prove that f is absolutely continuous on [0, 1].
- (ii) (10 points) Let $f:[0,1]\to\mathbb{R}$ satisfy $|f(x)-f(y)|\leq |x^{1/3}-y^{1/3}|$ for all $x,y\in[0,1]$. Must f be absolutely continuous? Justify your answer.

Part II

V. Let $f \in L^{\infty}([0,1])$. Prove the following statements:

- (i) (10 points) The function $p\mapsto ||f||_p$ is nondecreasing for $1\leq p<\infty.$
- (ii) (10 points) $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.

VI. Let \mathcal{H} be the Hilbert space $L^2([0,1])$.

(i) (5 points) Prove the Parallelogram Identity:

$$||f+g||^2 + ||f-g||^2 = 2(||f||^2 + ||g||^2)$$
 $\forall f, g \in \mathcal{H}.$

(ii) (15 points) Let $K \subset \mathcal{H}$ be a nonempty, closed, convex set, and let $f \in \mathcal{H}$. Prove that there exists a unique element $h \in K$ so that $||f - h|| = \inf_{g \in K} ||f - g||$.