Math 540 Comprehensive Examination May 16, 2006

Solve all five problems. All problems have equal value.

m denotes the Lebesgue measure on \mathbb{R} .

I. Prove the following equality by using an infinite series expansion. Justify the term-by-term integration.

$$\int_{[0,1]} \frac{\ln x}{x-1} \ dm(x) = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Does this equality hold if the integral is regarded as a Riemann integral?

II. Suppose $f_n:[0,1]\to[0,\infty)$ are measurable, $||f_n||_2\leq 1$ for all n, and $f_n\to f$ a.e. on [0, 1].

(i) Show $f \in L^2[0,1]$.

(ii) Show $||f_n - f||_1 \to 0$ as $n \to \infty$. Hint. One way of solving (ii) is by using Egoroff's theorem.

III. Suppose $f \in L^1(\mathbb{R}, m)$. Prove that for each $\varepsilon > 0$, there is $\delta > 0$ such that $\int_{\mathbb{R}} |f| dm < \varepsilon$ whenever E is measurable and $m(E) < \delta$.

IV. (i) Let $f \in L^p([0,1], m)$, 1 . Show

$$\lim_{y \to 0^+} y^{\frac{1-p}{p}} \int_{[0,y]} f(x) \ dm(x) = 0.$$

(ii) Is it true that

$$\bigcap_{1 \le p \le \infty} L^p(\mathbb{R}, m) \subseteq L^{\infty}(\mathbb{R}, m) ?$$

Justify your answer.

V. Consider the Banach space

$$\ell^p = \left\{ f : \mathbb{N} \to \mathbb{C} : \|f\|_p = \left(\sum_{n=1}^{\infty} |f(n)|^p \right)^{\frac{1}{p}} < \infty \right\}, \quad 1 < p < \infty.$$

Prove directly that for every element ϕ in the dual Banach space $(\ell^3)^*$ there is a unique element $g \in \ell^{\frac{3}{2}}$ such that

$$\phi(f) = \sum_{n=1}^{\infty} f(n)g(n).$$

What is the relation between $||g||_{\frac{3}{2}}$ and $||\phi||$?