Math 540 Comprehensive Examination January 19, 2017

Do five out of six problems. Each problem is worth 20 points. Justify all claims.

Notation. m denotes the Lebesgue measure on \mathbb{R} . $C_0(\mathbb{R})$ denotes the space of continuous functions $g: \mathbb{R} \to \mathbb{R}$ which vanish at infinity, i.e., $\lim_{x \to \pm \infty} g(x) = 0$.

- 1. (a) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of measurable functions. Assume that $f_n\to f$ a.e. and that $f_n\to g$ in measure. Prove that f=g a.e.
 - (b) Give an example of a sequence of functions $f_n:[0,1]\to\mathbb{R}$ such that $f_n\to 0$ in measure, but the sequence $(f_n(x))_{n\in\mathbb{N}}$ does not converge for any choice of $x\in[0,1]$.
- **2.** Assume that $f \in L^2([0,\infty))$. Define $F:(0,\infty) \to \mathbb{R}$ by

$$F(x) = \int_0^\infty \frac{f(t)}{1+xt} dt.$$

- (a) Prove that F is continuous.
- (b) Prove that F is differentiable.
- 3. Assume that $f: \mathbb{R} \to \mathbb{R}$ is a continuously differentiable and 2π periodic function. Let $\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt$ be the *n*th Fourier coefficient of f. Prove that the sequence $(\hat{f}(n))_{n \in \mathbb{Z}}$ is in $\ell^1(\mathbb{Z})$, i.e.

$$\sum_{n\in\mathbb{Z}}|\hat{f}(n)|<\infty.$$

4. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions in $L^1(\mathbb{R})$ such that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) g(x) \, dx = g(0)$$

for every $g \in C_0(\mathbb{R})$. Prove that the sequence $(f_n)_{n \in \mathbb{N}}$ is not Cauchy in L^1 .

- 5. Let $g \in L^1([0,1])$ be a function with $||g||_1 > 0$.
 - (a) Let $f \in L^{\infty}([0,1])$ be a nonnegative function with $||f||_{\infty} > 0$ and such that the set $\{x : f(x) = ||f||_{\infty}\}$ has measure zero. Prove that

$$\int fg < \|g\|_1 \|f\|_{\infty}.$$

Give an explicit example of such a function f.

- (b) On the other hand, exhibit (i.e. explicitly define) a function $f \in L^{\infty}([0,1])$ with $||f||_{\infty} > 0$ such that $\int fg = ||g||_1 ||f||_{\infty}$.
- 6. (a) State the Lebesgue Density Theorem.
 - (b) Let $E \subset \mathbb{R}$ be a measurable set. For $x \in \mathbb{R}$, define $E + x := \{a + x : a \in E\}$. Assume that E + q = E for all $q \in \mathbb{Q}$. Prove that either m(E) = 0 or $m(\mathbb{R} \setminus E) = 0$.

Hint. First, try to derive a contradiction assuming that both E and $\mathbb{R} \setminus E$ contain nonempty open intervals. An approximate version of this adapts to the general case.