Math 540 Comprehensive Examination January 16, 2013

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

- 1. Short answer questions. For each statement give a counterexample or a short proof/explanation.
- a) If g is continuous on \mathbb{R} and if f = g m a. e., then f is continuous m a.e. on \mathbb{R} .
- b) If $f_n \to f$ m a.e. and $||f_n||_{L^1(m)} \le 1$ for each n then $f \in L^1(m)$.
- c) If f_n goes to zero pointwise m a.e. on \mathbb{R} , then a subsequence goes to zero in measure w.r.t. m.
- **2.** Let \mathcal{A} be a σ -algebra containing all open sets in the interval I = [0, 1]. Show that $\mathcal{A} \times \mathcal{A}$ contains all open sets in $I \times I$.
- 3. Let (X, \mathcal{A}, μ) be a measure space. Suppose that $\{E_n\}$ is a sequence of measurable sets in \mathcal{A} such that $\sum_{n=1}^{\infty} \mu(E_n) < \infty$. Let E be

$$E = \{x : x \in E_n \text{ for infinitely many } n\}.$$

Prove that $\mu(E) = 0$.

- **4.** Let $K \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} K = 1$. Let $K_{\varepsilon}(x) = \varepsilon^{-n}K(\varepsilon^{-1}x)$. Prove that if $f \in C_c^m(\mathbb{R}^n)$ for some given positive integer, then $D^{\alpha}(K_{\varepsilon} * f)(x)$ converges to $D^{\alpha}f(x)$ uniformly in \mathbb{R}^n . Here $D^{\alpha} = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_n}^{\alpha_n}$ for any multi-index $\alpha \in (N \cup \{0\})^n$ with $|\alpha| = \alpha_1 + \cdots + \alpha_n \leq m$.
- **5.** Let $f \in L^1(\mathbb{R}, m)$. Prove that for m a. e. $x \in [0, 1]$, the sequence $\{f(n+x)\}_{n=1}^{\infty}$ converges to 0.
- **6.** Prove that

$$Lf = \sum_{n \in \mathbb{Z}} \frac{e^{in}}{2^{|n|}} \widehat{f}(n).$$

gives a bounded linear functional on $L^2([0,1],m)$ and calculate its norm. Here $\widehat{f}(n)=\langle f,e^{2\pi inx}\rangle=\int_{[0,1]}f(x)e^{-2\pi inx}dm(x)$.