Math 540 Comprehensive Examination January 18, 2012

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

- 1. Let E and F be Lebesgue measurable subsets of the real line with m(E) > 0 and m(F) > 0. Show that some translate of E intersects F in a set of positive measure.
 - **2.** Prove or disprove the following:
 - (a) Convergence in measure implies convergence a.e. of a subsequence.
 - (b) Convergence in L^1 implies convergence in measure.
 - **3.** Assume that $f \in L^1(\mathbb{R}, m)$ and

$$\left| \int_{I} f dm \right| \leq [m(I)]^{2}$$

for any interval I. Prove that f = 0 m a.e.

4. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R}, m)$. Prove that

$$\lim_{\delta \to 0} \int_{\mathbb{R}} |f(x+\delta) - f(x)|^p dm(x) = 0.$$

5. Let $p \in (1, \infty)$ and let $\alpha = 1 - \frac{1}{p}$. Assume that f is absolutely continuous on [0, 1] and $f' \in L^p([0, 1], m)$. Prove that $f \in Lip(\alpha)$, i.e. $\exists C, \forall x, y \in [0, 1]$,

$$|f(x) - f(y)| \le C|x - y|^{\alpha}.$$

6. Compute the following limit and justify your calculation:

$$\lim_{n \to \infty} \int_0^\infty \frac{x^{n-2}}{1+x^n} \cos(\pi nx) \ dx.$$