## Math 540 Exam

January, 2010

Calculators, books and notes are not allowed!

(Do 4 problems out of 5 problems. Mark clearly which 4 problems to be graded.)

- 1. Suppose that  $f:[0,1]\to\mathbb{R}$  is differentiable a.e..
- (a) Show that f' may not be in  $L^1([0,1])$  by an example.
- (b) If  $f' \in L^1([0,1])$ , must

$$\int_{c}^{d} f'(x)dx = f(d) - f(c)$$

hold for every  $[c,d] \subset [0,1]$ ? Justify your answer.

- 2. Suppose  $\{f_n\}$  is a sequence of bounded measurable functions on a bounded measurable set  $K \subset \mathbb{R}$ . Prove that
- a) If  $f_n \to f$  uniformly on K, then  $\lim_{n \to \infty} \int_K f_n = \int_K f$ . b) Show that the hypothesis "K is bounded" can not be omitted.
- 3. a) Let f be a measuarble function on [0, 1]. Let  $||f||_{L^p([0,1])} = \left(\int_{[0,1]} |f(t)|^p dt\right)^{1/p}$  for  $1 \le p < \infty$ and

$$||f||_{L^{\infty}([0,1])} = \operatorname{ess sup}_{t \in [0,1]} |f(t)| = \inf\{M : m(\{t \in [0,1] : |f(t)| > M\}) = 0\},$$

where m is Lebesgue measure on  $\mathbb{R}$ . Prove that

$$\lim_{p\to\infty} \|f\|_{L^p([0,1])} = \|f\|_{L^\infty([0,1])}$$

- b) Give a conterexample to show that a) fails when [0,1] is replaced by  $\mathbb{R}$ .
- 4. Suppose that  $(A_n)$  is a sequence of measurable subsets of [0,1], and let

$$A = \{x : x \in A_n \text{ for infinitely many } n\}.$$

- (a) Suppose that  $\sum_{n=1} m(A_n) < \infty$ . Prove that m(A) = 0.
- (b) Is the conclusion m(A) = 0 true if we only assume that  $\lim_{n\to\infty} m(A_n) = 0$ ? Prove your
- 5. A linear operator T on  $L^2(\mathbb{R})$  is an operator on  $L^2(\mathbb{R})$  such that  $T(\alpha f + \beta g) = \alpha f + \beta g$  for all  $f,g\in L^2(\mathbb{R})$  and all  $\alpha,\beta\in\mathbb{C}$ . An operator T is called a weak (2,2) operator if

$$m(\{x \in \mathbb{R} : |Tf(x)| > \lambda\}) \le \frac{C\|f\|_{L^2(\mathbb{R})}^2}{\lambda^2},$$

holds for any  $f \in L^2$  and any  $\lambda$ , where the constant C is independent of f and  $\lambda$ , and m is the Lebesgue measure on  $\mathbb{R}$ . For any  $\epsilon > 0$ , let  $T_{\epsilon}$  be a linear operator on  $L^{2}(\mathbb{R})$  and define

$$T^*f(x) = \sup_{\epsilon > 0} |T_{\epsilon}f(x)|.$$

Let A be the set defined by

$$A = \{ f \in L^2(\mathbb{R}) : \lim_{\epsilon \to 0} T_{\epsilon} f(x) = f(x) \ a.e \}.$$

Prove that if  $T^*$  is weak (2,2), then A is closed in  $L^2(\mathbb{R})$ .