Math 540 Comprehensive Examination January 12, 2009

Solve problems (1),(2), and (3). Also solve **two** of the problems (4),(5),(6), and (7).

Part I (Solve all problems)

- (1) (20=10+10 pts)
 - (a) Assuming Fatou's lemma prove Lebesgue's Dominated Convergence Theorem.
 - (b) Prove that Lebesgue's Dominated Convergence Theorem holds when pointwise convergence is replaced by convergence in measure.
- (2) (20 pts) For a nonnegative measurable function f on a measure space (X, μ) , let

$$\omega_f(t) := \mu(\{x \in X : f(x) > t\}).$$

Prove that for every $p \in [1, \infty)$,

$$f \in L^p(\mu) \iff \sum_{k \in \mathbb{Z}} 2^{kp} \omega_f(2^k) < \infty.$$

- (3) (20=4 × 5 pts) State whether each of the following assertions is true or false. Give a short proof or counterexample.
 - (a) Every dense open subset of (0, 1) has Lebesgue measure one.
 - (b) If $f: \mathbb{R} \to \mathbb{R}$ is equal to a continuous function $g: \mathbb{R} \to \mathbb{R}$ almost everywhere, then f is continuous at almost every point $x \in X$.
 - (c) If $f \in AC[0,1]$, then f is Lipschitz on [0,1].
 - (d) If f is Riemann integrable on [a, b], then $|f|^{\alpha}$ is Riemann integrable on [a, b] for every $\alpha > 0$.

Part II (Solve two of the following four)

(4) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable everywhere, with $\sup_{x \in \mathbb{R}} |f'(x)| \leq K$. Show that

$$m(f(E)) \leq Km(E)$$

for all measurable sets $E \subseteq \mathbb{R}$. (m denotes the Lebesgue measure on \mathbb{R} .)

(5) (20=5+15 pts) (a) Give an example of $f \in BV[0,1]$ for which

$$\lim_{x \to 1^{-}} T_0^x(f) \neq T_0^1(f).$$

(b) Under the additional hypothesis that f is continuous at 1, show that

$$\lim_{x \to 1^{-}} T_0^x(f) = T_0^1(f).$$

(6) (20 pts) Let $f: \mathbb{R} \to \mathbb{R}$. Prove that f satisfies for some M>0 the Lipschitz condition

$$|f(x) - f(y)| \le M|x - y|, \quad \forall x, y \in \mathbb{R},$$

if and only if f is absolutely continuous and $|f'(x)| \leq M$ a.e.

(7) (20 pts) Let $1 and <math>0 < \alpha \le 1 - 1/p$. Compute

$$\sup\bigg\{\bigg|\int_{[0,1]} x^{-\alpha}g(x)\,dx\bigg|\,:\,g\text{ measurable and }\int_{[0,1]} |g(x)|^pdx\leq 1\bigg\},$$

and find a function $g \in L^p[0,1]$ for which the supremum is attained, when finite.