Math 540 Comprehensive Examination February 7, 2006

Answer any 5 out of 6. Indicate which 5 problems you want graded. All problems have equal value.

m denotes the Lebesgue measure on \mathbb{R} .

4.

I. Suppose $f:[0,1]\to\mathbb{R}$ is an integrable function. Prove that

$$\lim_{h\to 0}\int_{[0,1]}\frac{|1+hf(t)|-1}{h}\,\mathrm{d}m(t) = \int_{[0,1]}f(t)\,\mathrm{d}m(t).$$

II. Suppose $f \in L^1([0,1])$. Prove that for every $\varepsilon > 0$ there is $\delta > 0$ such for every measurable set E with $mE < \delta$ we have $\int_E |f| \, \mathrm{d} m < \varepsilon$. Conclude that the function F defined by $F(x) = \int_{[0,x]} f \, \mathrm{d} m$ is absolutely continuous on [0,1].

III. Decide whether each of the following statements is true or false and justify your answer.

(a) If $f:[0,\infty)\to\mathbb{R}$ is continuous and $\lim_{x\to\infty}f(x)$ exists and is finite, then f is uniformly continuous on $[0,\infty)$.

(b) Let $f_n:[0,1]\to[0,\infty)$ be a sequence of integrable functions. If $f_n\to f$ in measure on [0,1], then

$$\int_{[0,1]} f \, \mathrm{d}m \, \leq \, \liminf_{n \to \infty} \int_{[0,1]} f_n \, \mathrm{d}m.$$

(c) If $f:[0,1]\to\mathbb{R}$ is a function such that $|f(x)-f(y)|\leq |\sqrt{x}-\sqrt{y}|$ for all $x,y\in[0,1]$, then f is absolutely continuous on [0,1].

IV. Let $f \in L^1(\mathbb{R})$. Prove that

$$\lim_{n\to\infty}\int_{\mathbb{R}}f(x)\sin(nx)\ \mathrm{d}m(x)\ =\ 0.$$

V. (a) Suppose $f \in L^1(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Prove that $f \in L^p(\mathbb{R})$ for every $1 \leq p < \infty$.

(b) Is it true that $L^1(\mathbb{R}) \cap L^3(\mathbb{R}) \subseteq L^2(\mathbb{R})$? Justify your answer.

VI. In the Hilbert space $\mathcal{H} = \ell^2(\mathbb{N})$ a sequence (f_n) is said to converge weakly to f if $\lim_n \langle f_n, g \rangle = \langle f, g \rangle$ for all $g \in \mathcal{H}$.

(a) Prove that every infinite orthonormal set $(u_n)_n$ in \mathcal{H} converges weakly to zero.

(b) Prove that if $f \in \mathcal{H}$, ||f|| < 1, then there is a sequence $(f_n)_n$ in \mathcal{H} , $||f_n|| = 1$, such that $f_n \to f$ weakly in \mathcal{H} .