Math 540 Comprehensive Examination August 21, 2017

Do five out of six problems. Each problem is worth 20 points. Justify all claims.

Notation. For a set $A \subseteq X \times Y$ and points $x \in X, y \in Y$, let

$$A_x := \{ v \in Y : (x, v) \in A \} \text{ and } A^y := \{ u \in X : (u, y) \in A \}.$$

Below λ denotes the Lebesgue measure on \mathbb{R} .

1. (a) Let p > 1 and let $f_n : (0,1) \to (0,\infty)$ be a sequence of measurable functions such that $x(f_n(x))^p \le 1$ for all 0 < x < 1 and all $n \in \mathbb{N}$, and $f_n \to 0$ λ -a.e. Prove that

$$\int_0^1 f_n \, d\lambda \to 0.$$

- (b) Is the result of part (a) true when p = 1? Prove or give a counterexample.
- 2. Let (X, \mathcal{M}, μ) be a σ -finite measure space and $f: X \to [0, \infty]$ a non-negative measurable function. Prove:

$$\int f \, d\mu = \int_0^\infty \mu(\{x \in X : y \le f(x)\}) \, d\lambda(y).$$

- 3. Decide whether each of the following statements is true or false. Justify your answer with a short proof if the statement is true or a counterexample if it is false.
 - (a) Let (f_n) be a sequence in $L^p([0,1],\lambda)$ and let $f \in L^p([0,1],\lambda)$. If $f_n \to_{L^p} f$ (i.e. converges in the L^p -norm), then $f_n \to_{\lambda} f$ (i.e. converges in measure).
 - (b) If $f:[0,1]\to\mathbb{R}$ is absolutely continuous and one-to-one, then f^{-1} is absolutely continuous.
 - (c) If $f:[0,1]\to\mathbb{R}$ is a Lebesgue integrable function with $\int_A f\,d\lambda=0$ for all Lebesgue measurable sets $A\subseteq[0,1]$, then f=0 λ -a.e.
 - (d) If $f:[0,1]\to\mathbb{R}$ is continuous, then f is of bounded variation.
- **4.** Suppose that $f:[0,1]\to [0,\infty)$ is in $L^1([0,1],\lambda)$ and that, for every Lebesgue measurable $A\subseteq [0,1]$,

$$\int_{A} f \, d\lambda \le \sqrt{\lambda(A)}.$$

Prove that $f \in L^p([0,1], \lambda)$ for all $p \in [1,2)$.

Hint. For each integer $n \ge 0$, consider $A_n := \{x \in [0,1] : 2^n \le f < 2^{n+1}\}$.

- 5. Let c > 0.
 - (a) Let $A \subseteq \mathbb{R}^2$ be the set defined by $A_x := (x, x + c]$ for each $x \in \mathbb{R}$. Show that A is Borel and explicitly describe A^y for each $y \in \mathbb{R}$.
 - (b) Let $f: \mathbb{R} \to [0, \text{ be a right-continuous non-decreasing bounded function, so } f(\infty) := \lim_{x \to \infty} f(x) \text{ and } f(-\infty) := \lim_{x \to -\infty} f(x) \text{ exist. Assuming } f(-\infty) = 0, \text{ prove that}$

$$\int_{\mathbb{R}} \left[f(x+c) - f(x) \right] d\lambda(x) = cf(\infty).$$

6. Let f be an absolutely continuous (2π) -periodic function on $\mathbb R$ such that

$$0 = \int_{[0,2\pi]} f(x) \, dx = \int_{[0,2\pi]} f(x) e^{ix} \, dx = \int_{[0,2\pi]} f(x) e^{-ix} \, dx.$$

Prove that $||f||_2 \le \frac{1}{2} ||f'||_2$.