Math 540 Real Analysis — Comprehensive Exam — August 2018

Do five of the six problems. Each problem is worth 20 points. Justify all claims.

Notation:
n is a positive integer.
m is Lebesgue measure on \mathbb{R}, and m_n is Lebesgue measure on \mathbb{R}^n.

Problem 1. Show that if $f \in L^1(\mathbb{R}^n)$, and g is continuous and bounded on \mathbb{R}^n, then the convolution $f \ast g(x)$ is continuous.

Problem 2. Suppose $f_k \to f$ in $L^p(\mathbb{R}^n)$ as $k \to \infty$, and define $g : \mathbb{R}^n \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{if } |x| \leq 1, \\ \frac{1}{|x|} & \text{if } |x| > 1. \end{cases}$$

Show that if $1 \leq p < n/(n-1)$ then $f_k g \in L^1(\mathbb{R}^n)$ and $\int f_k g \, dm_n \to \int f g \, dm_n$ as $k \to \infty$.

Problem 3. Let (X, \mathcal{M}, μ) be a measure space and (f_n) be a sequence of measurable functions such that $f_n \geq 0$ on X for every n and f_n converges in measure to f. Show that

$$\int_X f \, d\mu \leq \liminf \int_X f_n \, d\mu.$$

Problem 4. Show that the function

$$f(x, y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

is not Lebesgue integrable on the unit square $[0, 1]^2$.

Problem 5. Let $f_n : [a, b] \to \mathbb{R}$ be an increasing function, for each n. Suppose the series

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

converges to a real number for each $x \in [a, b]$, that is, $f : [a, b] \to \mathbb{R}$. Prove that

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x) \quad \text{for almost every } x \in [a, b].$$

Problem 6. Suppose $f(t)$ is 2π-periodic and absolutely continuous, so that f' exists and integration by parts is valid. Assume $f, f' \in L^2[-\pi, \pi]$ with $\int_{-\pi}^{\pi} f(t) \, dt = 0$.

Prove

$$\int_{-\pi}^{\pi} |f(t)|^2 \, dt \leq \int_{-\pi}^{\pi} |f'(t)|^2 \, dt,$$

and find all functions f for which equality holds.