Math 540 Real Analysis — Comprehensive Exam — August 2018

Do five of the six problems. Each problem is worth 20 points. Justify all claims. *Notation:*

n is a positive integer.

m is Lebesgue measure on \mathbb{R} , and m_n is Lebesgue measure on \mathbb{R}^n .

Problem 1. Show that if $f \in L^1(\mathbb{R}^n)$, and g is continuous and bounded on \mathbb{R}^n , then the convolution f * g(x) is continuous.

Problem 2. Suppose $f_k \to f$ in $L^p(\mathbb{R}^n)$ as $k \to \infty$, and define $g: \mathbb{R}^n \to \mathbb{R}$ by

$$g(x) = \begin{cases} 0 & \text{if } |x| \le 1, \\ 1/|x| & \text{if } |x| > 1. \end{cases}$$

Show that if $1 \leq p < n/(n-1)$ then $fg \in L^1(\mathbb{R}^n)$ and $\int f_k g \, dm_n \to \int fg \, dm_n$ as $k \to \infty$.

Problem 3. Let (X, \mathcal{M}, μ) be a measure space and (f_n) be a sequence of measurable functions such that $f_n \geq 0$ on X for every n and f_n converges in measure to f. Show that

$$\int_X f \, d\mu \le \liminf_n \int_X f_n \, d\mu.$$

Problem 4. Show that the function

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

is not Lebesgue integrable on the unit square $[0, 1]^2$.

Problem 5. Let $f_n:[a,b]\to\mathbb{R}$ be an increasing function, for each n. Suppose the series

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

converges to a real number for each $x \in [a, b]$, that is, $f: [a, b] \to \mathbb{R}$. Prove that

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x)$$
 for almost every $x \in [a.b]$.

Problem 6. Suppose f(t) is 2π -periodic and absolutely continuous, so that f' exists and integration by parts is valid. Assume $f, f' \in L^2[-\pi, \pi]$ with $\int_{-\pi}^{\pi} f(t) dt = 0$.

Prove

$$\int_{-\pi}^{\pi} |f(t)|^2 dt \le \int_{-\pi}^{\pi} |f'(t)|^2 dt,$$

and find all functions f for which equality holds.