Solve five of the following six problems. Each problem is worth 20 points. Calculators, books and notes are not allowed. Good Luck!

Notation: m is the Lebesgue measure on \mathbb{R} .

1. Let $(a_j)_{j=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$\lim_{q \to \infty} \left(\sum_{j=1}^n |a_j|^q \right)^{1/q} = \sup_{j \in \{1, \dots, n\}} |a_j|$$

provided that $n \in \mathbb{N}$ is independent of q.

2. Show that

$$\lim_{b \to \infty} \int_0^b \frac{\sin x}{x} dx = \frac{\pi}{2},$$

by integrating $e^{-xy} \sin x$ with respect to x and y. Justify your answer.

3. Let f be a measurable function on a measure space (X, \mathcal{A}, μ) . The decreasing rearrangement of f is the function $f^*: (0, \infty) \to [0, \infty]$ defined by

$$f^*(t) = \inf\{\alpha : \mu(\{x : |f(x)| > \alpha\}) \le t\},\$$

where $\inf \emptyset$ is defined to be ∞ . Prove that

(a) f^* is decreasing;

(b) if $f^*(t) < \infty$, then $\mu(\{x : |f(x)| > f^*(t)\}) \le t$.

4. Let $f:[0,1] \to \mathbb{R}$ be a continuous function and $g:[0,1] \to [0,1]$ be a Borel function. Given $n \in \mathbb{N}$, explain why the function $f[g(x)^n]$ is Lebesgue integrable over the closed interval [0,1]. Compute the limit

$$\lim_{n\to\infty}\int\limits_0^1 f\left(\left[g\left(x\right)\right]^n\right)dx.$$

Justify your answer.

5. If $E \subseteq [0,1]$, then $\chi_E : [0,1] \to \mathbb{R}$ denotes the characteristic function of E. Find necessary and sufficient condition for the set $E \subseteq [0,1]$ to be Riemann integrable over the closed interval [0,1]. Justify your answer.

6. Let $E \subseteq \mathbb{R}$ be a non-empty Lebesgue measurable set and $(f_n : E \to \mathbb{R})_{n=1}^{\infty}$ be a sequence of Lebesgue measurable functions. We say that the sequence $(f_n)_{n=1}^{\infty}$ converges almost uniformly to a measurable function $f : E \to \mathbb{R}$ on the set E as $n \to \infty$ if for each $\varepsilon > 0$, there is a non-empty Lebesgue measurable set $E_{\varepsilon} \subseteq E$ such that $m(E_{\varepsilon}) < \varepsilon$ and the sequence $(f_n)_{n=1}^{\infty}$ converges to funiformly on the set $E'_{\varepsilon} = E \setminus E_{\varepsilon}$ as $n \to \infty$. Suppose that $(f_n)_{n=1}^{\infty}$ is a Cauchy sequence in Lebesgue's measure m, that is, for every $\varepsilon > 0$,

$$\lim_{n,j\to\infty} m\left\{x\in E: \left|f_n\left(x\right) - f_j\left(x\right)\right| \ge \varepsilon\right\} = 0.$$

Prove that there is a Lebesgue measurable function $f: E \to \mathbb{R}$ and that the sequence $(f_n)_{n=1}^{\infty}$ has a subsequence $(f_{n_k})_{k=1}^{\infty}$ such that $(f_{n_k})_{k=1}^{\infty}$ converges almost uniformly to f on the set E as $k \to \infty$.