Math 540 Comprehensive Examination August 21, 2014

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

- 1. Prove or disprove the following:
- (a) Convergence in measure implies convergence a.e. of a subsequence.
- (b) Convergence in L^1 implies convergence in measure.
- **2.** Let f be a function on [a, b] of total variation $T_a^b f < \infty$.
 - (i) Prove that $\int_{[a,b]} |f'| \leqslant T_a^b f$.
 - (ii) Prove that if f is absolutely continuous then equality holds in (i).
- 3. Prove that

$$Lf = \sum_{n \in \mathbb{Z}} \frac{e^{in}}{2^{|n|}} \widehat{f}(n).$$

gives a bounded linear functional on $L^2([0,1],m)$ and calculate its norm. Here $\widehat{f}(n)=\langle f,e^{2\pi inx}\rangle=\int_{[0,1]}f(x)e^{-2\pi inx}dm(x)$.

4. Let g be a bounded measurable function and f be integrable over \mathbb{R} . Show that

$$\lim_{t \to 0} \int_{\mathbb{R}} |g(x)| |f(x) - f(x+t)| dx = 0.$$

5. Let ω be an irrational number. For any $f \in L^2(\mathbb{T})$, show that

$$\lim_{N\to 0} \int_{\mathbb{T}} \left| \frac{1}{N} \sum_{n=1}^{N} f(x + n\omega) - \int_{\mathbb{T}} f(\theta) d\theta \right|^{2} dx = 0.$$

6. Prove that if $E \subset \mathbb{R}$ is a set such that every subset of E is Lebesgue measurable, then m(E) = 0.