Math 540 Comprehensive Examination August 20, 2013

Solve five of the following six. Each problem is worth 20 points. The Lebesgue measure is denoted by m.

- 1. Let μ^* be an outer measure on X and $\mu^*(X) < \infty$. We call $E \subseteq X$ regular if there exists a μ^* -measurable set A with $E \subseteq A$ and $\mu^*(A) = \mu^*(E)$. Suppose E is a regular set. Prove that E is μ^* -measurable iff $\mu^*(E) + \mu^*(E^c) = \mu^*(X)$.
- 2. Let E be a Lebesgue measurable set with m(E) > 0. Show that E E contains an open interval centered at 0.
- 3. Let f_n be a sequence of Lebesgue measurable functions on the interval [0,1]. Assume that f_n converges to a function f m almost everywhere, and that

$$\int_{[0,1]} |f_n|^2 dm \le 1$$

for each n. Prove that f_n converges to f in L^1 . Hint: Use Egoroff's thm.

- 4. Prove or disprove the following:
 - a) Convergence in measure implies convergence a.e. of a subsequence.
 - b) Convergence in L^1 implies convergence in measure.
- 5. a) Provide a non-constant function f such that f is differentiable everywhere in [-1, 1] and $f \in BV([-1, 1])$.
- b) Provide a function f such that f is differentiable everywhere in [-1,1] but $f \notin BV([-1,1])$.
- **6.** Let $1 \le r .$
 - a) Show that

$$L^r(\mathbb{R}, m) \cap L^s(\mathbb{R}, m) \subset L^p(\mathbb{R}, m).$$

b) Show that

$$L^{s}([0,1],m) \subset L^{r}([0,1],m).$$

c) Is it true that $L^s(\mathbb{R}, m) \subset L^r(\mathbb{R}, m)$? Justify your answer.