Math 540 Exam

August, 2011

Calculators, books and notes are not allowed!

- 1. Let μ be counting measure on N. Interpret Fatou's lemma and the dominated convergence theorems for μ as statements about infinite series.
- 2. Let $f \in L^1(m)$, where m is Lebesgue measure on \mathbb{R} . Suppose

$$F(x) = \int_{-\infty}^{x} f \, dm,$$

then show that F is uniformly continuous on \mathbb{R} .

3. Suppose that $\{f_n\}$ be a sequence of measurable functions on measure space (X, \mathcal{A}, μ) , and $f_n \to f$ in measure. If there exists $g \in L^1(X, \mathcal{A}, \mu)$ such that $|f_n| \leq g$ holds for all n, then prove that

$$\lim_{n\to\infty}\int f_n=\int f.$$

- 4. a) State Fubini-Tonelli theorem for σ -finite measure spaces.
- b) Give an example to show the hypothesis of σ -finiteness in Fubini-Tonelli is necessary.
- 5. Suppose that a real-valued function f is increasing on [a, b]. Prove that

$$\int_a^b f'(t)dt \le f(b) - f(a).$$

6. Let f be a measurable function on a measure space (X, \mathcal{A}, μ) . The decreasing rearrangement of f is the function $f^*:(0,\infty)\to [0,\infty]$ defined by

$$f^*(t) = \inf\{\alpha : \mu(\{x : |f(x)| > \alpha\}) \le t\},$$

where $\inf \emptyset$ is defined to be ∞ . Prove that

- a) f^* is decreasing;
- b) if $f^*(t) < \infty$, then $\mu(\{x : |f(x)| > f^*(t)\}) \le t$.