Math 540 Exam

August, 2010

Calculators, books and notes are not allowed!

- 1. Let E, F be measurable subsets of the real line with m(E) > 0 and m(F) > 0. Here m is the Lebesgue measure on \mathbb{R} . Show that $F \cap (\text{some translate of } E)$ is a set of positive measure.
- 2. Let $F:[0,\infty)\mapsto [0,\infty)$ be a continuously differentiable and monotone function with F(0)=0. Prove that

 $\int_{\mathbb{R}} F(f(x))dm = \int_0^\infty F'(t)m\{x \in \mathbb{R} : f(x) > t\}dt,$

where $f \geq 0$ and $f \in L^1(\mathbb{R})$.

3. a) Let g be an integrable function on [0,1]. Show that there is a bounded measurable function f such that $||f||_{\infty} \neq 0$ and

 $\int_{[0,1]} f(x)g(x)dm = \|f\|_{\infty} \|g\|_{1}.$

b) Let g be a bounded measurable function. Show that for each $\varepsilon > 0$, there is an integrable function f such that $||f||_1 \neq 0$ and

$$\int f(x)g(x)dm \ge (\|g\|_{\infty} - \varepsilon)\|f\|_1.$$

- 4. Let $1 \leq p \leq \infty$. Suppose $f \in L^p(\mathbb{R})$ and $g \in L^{p'}(\mathbb{R})$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Prove that $f * g(x) = \int f(x-y)g(y)dy$ is a bounded continuous function on \mathbb{R} .
- 5. a) Give an example of a function that has a positive derivative at a point, but is not monotone increasing in any neighborhood of that point.
- b) Give an example of a function of two variables which has all directional derivatives at a point of discontinuity.
- 6. Let ω be an irrational number and let $\mathbb T$ be the circle of length 1 centered at the origin. For any $f \in L^2(\mathbb T)$, show that

$$\lim_{N\to 0} \int_{\mathbb{T}} \left| \frac{1}{N} \sum_{n=1}^{N} f(x + n\omega) - \int_{\mathbb{T}} f(\theta) d\theta \right|^{2} dx = 0.$$

Note that f is defined to have period 1.