Math 540 Comprehensive Examination August 18, 2007

Solve five of the following six. Each problem is worth 20 points.

1. Compute the following limit and justify your calculation:

$$\lim_{n\to\infty}\int_0^\infty \frac{x^{n-2}}{1+x^n}\cos(\pi nx)\ dx.$$

2. (10+10 pts.) Prove or disprove by giving a counterexample the following two propositions $(f_n, f$ are real-valued):

(i) $(f_n \xrightarrow{n} f \text{ in } L^2[0,1]) \Longrightarrow (f_n^2 \xrightarrow{n} f^2 \text{ in } L^1[0,1]).$

(ii) $(f_n \in L^2[0,1], f_n \xrightarrow{n} f$ weakly in $L^2[0,1]) \Longrightarrow (f_n^2 \xrightarrow{n} f^2$ weakly in $L^1[0,1])$.

(Recall that $f_n \stackrel{n}{\to} f$ weakly in $L^p[0,1]$ iff $\Phi(f_n) \stackrel{n}{\to} \Phi(f)$ for every Φ linear bounded functional on $L^p[0,1]$.)

3. (10+10 pts.) Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of Q, and consider the set

$$A = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \left(r_n - \frac{1}{2^{m+n}}, r_n + \frac{1}{2^{m+n}} \right).$$

- (i) Is it true that $A = \mathbb{Q}$? Justify your answer.
- (ii) Find the measure of this set.
- **4.** (10+10 pts.) Let f be a function on [a, b] of total variation $T_a^b f < \infty$.

(i) Prove that $\int_{[a,b]} |f'| \leq T_a^b f$.

- (ii) Prove that if f is absolutely continuous then equality holds in (i).
- **5.** (10+10 pts.) Let $1 \le r .$
- (i) Show that

$$L^r[0,\infty)\cap L^s[0,\infty)\subset L^p[0,\infty).$$

(ii) Show that

$$L^{s}[0,1] \subset L^{r}[0,1].$$

Is it true that $L^s[1,\infty) \subset L^r[1,\infty)$? Justify your answer.

6. Let \mathcal{H}_0 be a closed linear subspace of the Hilbert space $\mathcal{H}=L^2[0,1]$ and let $f_0\in\mathcal{H}$. Prove the equality

$$\min_{f \in \mathcal{H}_0} \|f_0 - f\| = \max_{g \in \mathcal{H}_0^{\perp}} |\langle f_0, g \rangle|.$$

$$\|g\| = 1$$