Math 540 Comprehensive Examination August 22, 2006

Solve all problems from the first part and two problems from the second part. Indicate your choice. All problems have equal value.

m denotes the Lebesgue measure on \mathbb{R} .

Part I

1. Let $f:[a,b]\to\mathbb{R}$ be a Riemann integrable function. Show directly that f is (Lebesgue) measurable and Lebesgue integrable, and that

$$(\mathcal{R})\int_a^b f(x)\,dx = (\mathcal{L})\int_{[a,b]} f\,dm.$$

2. Decide whether each of the following three statements is true or false. Justify your answer.

(a) If f has bounded variation on [a, b], then f is Riemann integrable on [a, b].

(b) $f(x) = \sqrt{x} \sin x$ is absolutely continuous on $[0, 2\pi]$.

(c) Suppose $f_n:[0,1]\to\mathbb{R}$ are absolutely continuous functions with $T_0^1(f_n)\leq 1$ for every n and $f_n\to f$ uniformly on [0,1]. Does it follow that f is absolutely continuous on [0,1]?

3. For every $f \in L^{\infty}[0,1]$ show that:

(a) $||f||_p \le ||f||_{p'}$ whenever $1 \le p < p' \le \infty$.

(b) $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$.

Part II

4. (a) State the Baire category theorem.

(b) Suppose $(f_{\alpha})_{\alpha \in A}$ is a family of continuous functions on \mathbb{R} such that $\sup |f_{\alpha}(x)| < \infty$ for every $x \in \mathbb{R}$. Prove that there exists a non-empty open $\underset{\alpha \in A}{a \in A}$ interval I such that

$$\sup_{x\in I}\sup_{\alpha\in A}|f_{\alpha}(x)|<\infty.$$

5. Let

$$f(x) = \int_0^\infty e^{-xy} \left(\frac{\sin y}{y}\right)^4 dm(y).$$

(a) Is f continuous on $[0, \infty)$?

(b) Is f differentiable on $(0, \infty)$?

Justify your answers.

6. Suppose $f:[0,1] \to [0,\infty)$ is measurable and satisfies

$$m({x \in [0,1]: f(x) > y}) \le \frac{1}{y(\ln y)^2}$$
 for every $y > 2$.

Show that f is integrable.