Math 531 Comprehensive Exam May 2006

1. Let f(n) be the arithmetic function defined by the Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \frac{\zeta(s)}{\zeta(3s)} \quad (\sigma > 1),$$

where $\zeta(s)$ is the Riemann zeta function.

- (i) Express F(s) as an Euler product, and determine the values of f at prime powers.
- (ii) Estimate $\sum_{n \le x} f(n)$ with as good an error as you can get.
- 2. Suppose χ is a non-principal character modulo q. By the general theory of L-series the Dirichlet L-series $L(s,\chi)=\sum_{n=1}^{\infty}\chi(n)n^{-s}$ converges at s=1. Obtain an explicit bound (as good as you can get) in terms of x and q for the tails of this series, $R(x,\chi)=\sum_{n>x}\chi(n)n^{-1}$. (Explicit here means that the bound should involve concrete numerical constants, rather than O's or unspecified c's.)
- 3. Obtain an asymptotic estimate for the sum

$$S(x) = \sum_{x$$

with relative error $1/\log x$ (i.e., an estimate of the form $S(x) = f(x)(1 + O(1/\log x))$ with a simple elementary function f(x). (You may use any standard prime number estimates including the estimates of Chebychev, Mertens, and the Prime Number Theorem with error term.)

4. For $x \geq 2$, let

$$Q(x) = \prod_{p \le x} \left(1 + \frac{2}{p} \right).$$

Without using the Prime Number Theorem (you may use Chebychev and/or Mertens type estimates), obtain an asymptotic formula for Q(x), i.e., find a simple elementary function f(x) such that $Q(x) \sim f(x)$. (You can leave constants in this estimate unspecified. Partial credit will be given if you can only prove that f(x) represents the correct order of magnitude of Q(x), i.e., for a proof that $Q(x) \ll f(x)$ and $Q(x) \gg f(x)$ for $x \ge 2$.)

5. Let

$$F(s) = \frac{\zeta(s)}{\zeta(3s)},$$

where $\zeta(s)$ is the Riemann zeta function.

- (i) Determine all poles of F(s) and their residues in the half-plane $\sigma > 1/3$.
- (ii) Assume the Riemann Hypothesis. Describe as precisely as you can the location of the zeros and poles of F(s) in the strip $0 < \sigma < 1$.